【操作系统】select、poll和epoll详解

一、I/O多路复用

      I/O多路复用通过一种机制,使得一个进程可以监视多个描述符,一旦某个描述符就绪(一般是读就绪或者写就绪),能够通知程序进行相应的读写操作,支持I/O多路复用的系统调用有 select、poll、epoll。它们本质上仍是同步I/O,因为他们都需要在读写事件就绪后负责进行读写,这个读写过程是阻塞的,而异步I/O无需自己进行读写,异步I/O会负责把数据从内核拷贝到用户空间。
      与多进程和多线程技术相比,I/O多路复用技术的最大优势是系统开销小,系统不必创建进程/线程,也不必维护这些进程/线程,从而大大减小了系统的开销。
      epoll跟select都能提供多路I/O复用的解决方案。在现在的Linux内核里有都能够支持,其中epoll是Linux所特有,而select则应该是POSIX所规定,一般操作系统均有实现。

二、select

      select 函数监视的文件描述符分3类,分别是writefds、readfds、和exceptfds。调用后select函数会阻塞,直到有描述符就绪,或者超时(timeout指定等待时间),这时函数会返回。当select函数返回后,可以通过遍历fdset,来找到就绪的描述符。
      select目前几乎在所有的平台上支持,其良好跨平台支持是它的一个优点。select单个进程能够监视的文件描述符的数量存在最大限制,在Linux上一般为1024,可以通过修改宏定义甚至重新编译内核的方式提升这一限制,但是这样也会造成效率的降低。
      select本质上是通过设置或者检查存放fd标志位的数据结构来进行下一步处理。这样所带来的缺点是:

  1. select最大的缺点就是单个进程所打开的FD是有一定限制的,它由FD_SETSIZE设置,默认值是1024。一般来说这个数目和系统内存关系很大,具体数目可以cat /proc/sys/fs/file-max察看。32位机默认是1024个。64位机默认是2048.
  2. 对socket进行扫描时是线性扫描,即采用轮询的方法,效率较低。当套接字比较多的时候,每次select()都要通过遍历FD_SETSIZE个Socket来完成调度,不管哪个Socket是活跃的,都遍历一遍。这会浪费很多CPU时间。如果能给套接字注册某个回调函数,当他们活跃时,自动完成相关操作,那就避免了轮询,这正是epoll的思想,在后文详细介绍。
  3. 需要维护一个用来存放大量fd的数据结构,这样会使得用户空间和内核空间在传递该结构时复制开销大。

三、poll

      poll本质上和select没有区别,它将用户传入的数组拷贝到内核空间,然后查询每个fd对应的设备状态,如果设备就绪则在设备等待队列中加入一项并继续遍历,如果遍历完所有fd后没有发现就绪设备,则挂起当前进程,直到设备就绪或者主动超时,被唤醒后它又要再次遍历fd。这个过程经历了多次不必要的遍历。它是基于链表来存储的,因此没有最大连接数的限制。
poll的缺点:

  1. 大量的fd的数组被整体复制于用户态和内核地址空间之间。
  2. 如果报告了fd后,没有被处理,那么下次poll时会再次报告该fd。
  3. 由于同时连接的大量客户端在一时刻可能只有很少的处于就绪状态,因此随着监视的描述符数量的增长,其效率也会线性下降。

四、epoll

      epoll支持水平触发和边缘触发,最大的特点在于边缘触发,它只告诉进程哪些fd刚刚变为就绪态,并且只会通知一次。还有一个特点是,epoll使用“事件”的就绪通知方式,通过epoll_ctl注册fd,一旦该fd就绪,内核就会采用类似callback的回调机制来激活该fd,epoll_wait便可以收到通知。
epoll的优点:

  1. 没有最大并发连接的限制,能打开的FD的上限远大于1024(1G的内存上能监听约10万个端口)。
  2. 效率提升,不是轮询的方式,不会随着FD数目的增加效率下降。只有活跃可用的FD才会调用callback函数;epoll最大的优点就在于它只管“活跃”的连接,而跟连接总数无关,因此在实际的网络环境中,epoll的效率就会远远高于select和poll。
  3. 内存拷贝,利用mmap()文件映射内存加速与内核空间的消息传递;即epoll使用mmap减少复制开销。

epoll对文件描述符的操作有两种模式:LT(level trigger)和ET(edge trigger)。其中LT模式是默认模式。
LT模式:当epoll_wait检测到描述符事件发生并将此事件通知应用程序,应用程序可以不立即处理该事件。下次调用epoll_wait时,会再次响应应用程序并通知此事件。
ET模式:当epoll_wait检测到描述符事件发生并将此事件通知应用程序,应用程序必须立即处理该事件。如果不处理,下次调用epoll_wait时,不会再次响应应用程序并通知此事件。
1、LT模式
  LT(level triggered)是缺省的工作方式,并且同时支持block和no-block socket。内核告知一个文件描述符是否就绪了,然后可以对这个就绪的fd进行IO操作。如果不作任何操作,内核还是会继续通知。
2、ET模式
  ET(edge-triggered)是高速工作方式,只支持no-block socket。在这种模式下,当描述符从未就绪变为就绪时,内核通过epoll告知。然后它会假设你知道文件描述符已经就绪,并且不会再为那个文件描述符发送更多的就绪通知,直到做了某些操作导致那个文件描述符不再为就绪状态了(比如在发送,接收或者接收请求,或者发送接收的数据少于一定量时导致了一个EWOULDBLOCK 错误)。注意,如果一直不对这个fd作IO操作(从而导致它再次变成未就绪),内核不会发送更多的通知(only once)。
  ET模式在很大程度上减少了epoll事件被重复触发的次数,因此效率要比LT模式高。epoll工作在ET模式的时候,必须使用非阻塞socket,以避免由于一个文件句柄的阻塞读/阻塞写操作导致处理多个文件描述符的任务等待。

五、总结

      在select/poll中,进程只有在调用一定的方法后,内核才对所有监视的文件描述符进行扫描,而epoll事先通过epoll_ctl()来注册一个文件描述符,一旦基于某个文件描述符就绪时,内核会采用类似callback的回调机制,迅速激活这个文件描述符,当进程调用epoll_wait()时便得到通知。epoll不用遍历文件描述符,而是通过监听回调的的机制。
注意:如果没有大量的idle-connection或者dead-connection,epoll的效率并不会比select/poll高很多,但是当遇到大量的idle-connection,epoll的效率将会远高于select/poll。

你可能感兴趣的:(操作系统,epoll,linux,操作系统)