C++ review(一)

文章目录

    • C++基础
      • 数据类型
      • 变量类型
      • 字符常量
      • 定义常量
      • 类型限定符
      • 存储类
      • 运算符
        • 算术运算符
        • 关系运算符
        • 位运算符
        • 赋值运算符
        • **运算符优先级**
      • 循环
        • 循环类型
          • while 循环
          • for循环
          • do... while循环
        • 循环控制语句
      • 判断语句
        • switch 语句的语法
      • 函数
        • 定义函数
        • 函数参数
          • 传值调用
          • 指针调用
          • 引用调用
          • question 1:引用和指针的区别?
      • 数字
        • 随机数
      • 数组
        • 声明数组
        • 初始化数组
        • 多维数组
          • 初始化二维数组
        • 指向数组的指针
        • 传递数组给函数
      • 字符串
        • String 类
      • 指针
        • Null 指针
        • 指针的算术运算
        • 指针 vs 数组
        • 指向指针的指针(多级间接寻址)
      • 引用
        • 引用 vs 指针
        • 创建引用
        • 把引用作为参数
        • 把引用作为返回值

C++基础

数据类型

C++ review(一)_第1张图片
一些基本类型可以使用一个或多个类型修饰符进行修饰:

  • signed 有符号
  • unsigned 无符号
  • short 字节减半
  • long 字节翻倍

修饰符 signed、unsigned、long 和 short 可应用于整型,signed 和 unsigned 可应用于字符型,long 可应用于双精度型。

变量类型

C++ review(一)_第2张图片

字符常量

C++ review(一)_第3张图片

定义常量

在 C++ 中,有两种简单的定义常量的方式:

  • 使用 #define 预处理器。
  • 使用 const 关键字。

类型限定符

C++ review(一)_第4张图片

存储类

存储类定义 C++ 程序中变量/函数的范围(可见性)和生命周期。这些说明符放置在它们所修饰的类型之前。下面列出 C++ 程序中可用的存储类:

  • auto
  • register
  • static
  • extern
  • mutable
  • thread_local (C++11)

auto 关键字用于两种情况:声明变量时根据初始化表达式自动推断该变量的类型、声明函数时函数返回值的占位符。

register 存储类用于定义存储在寄存器中而不是 RAM 中的局部变量。这意味着变量的最大尺寸等于寄存器的大小(通常是一个词),且不能对它应用一元的 ‘&’ 运算符(因为它没有内存位置)。

static 存储类指示编译器在程序的生命周期内保持局部变量的存在,而不需要在每次它进入和离开作用域时进行创建和销毁。因此,使用 static 修饰局部变量可以在函数调用之间保持局部变量的值。
static 修饰符也可以应用于全局变量。当 static 修饰全局变量时,会使变量的作用域限制在声明它的文件内。
当 static 用在类数据成员上时,会导致仅有一个该成员的副本被类的所有对象共享。

运算符

运算符是一种告诉编译器执行特定的数学或逻辑操作的符号。C++ 内置了丰富的运算符,并提供了以下类型的运算符:

  • 算术运算符
  • 关系运算符
  • 逻辑运算符
  • 位运算符
  • 赋值运算符
  • 杂项运算符

算术运算符

C++ review(一)_第5张图片

关系运算符

C++ review(一)_第6张图片

位运算符

C++ review(一)_第7张图片

赋值运算符

C++ review(一)_第8张图片

运算符优先级

C++ review(一)_第9张图片

循环

C++ review(一)_第10张图片

循环类型

C++ review(一)_第11张图片

while 循环
while(condition)
{
   statement(s);
}
for循环
for ( init; condition; increment )
{
   statement(s);
}
do… while循环
do
{
   statement(s);

}while( condition );

循环控制语句

C++ review(一)_第12张图片

判断语句

C++ review(一)_第13张图片

switch 语句的语法

switch(expression){
    case constant-expression  :
       statement(s);
       break; // 可选的
    case constant-expression  :
       statement(s);
       break; // 可选的
  
    // 您可以有任意数量的 case 语句
    default : // 可选的
       statement(s);
}

函数

定义函数

return_type function_name( parameter list )
{
   body of the function
}

函数参数

如果函数要使用参数,则必须声明接受参数值的变量。这些变量称为函数的形式参数。

形式参数就像函数内的其他局部变量,在进入函数时被创建,退出函数时被销毁。

当调用函数时,有两种向函数传递参数的方式:
C++ review(一)_第14张图片

传值调用
// 函数定义
void swap(int x, int y)
{
   int temp;
 
   temp = x; /* 保存 x 的值 */
   x = y;    /* 把 y 赋值给 x */
   y = temp; /* 把 x 赋值给 y */
  
   return;
}
指针调用
// 函数定义
void swap(int *x, int *y)
{
   int temp;
   temp = *x;    /* 保存地址 x 的值 */
   *x = *y;        /* 把 y 赋值给 x */
   *y = temp;    /* 把 x 赋值给 y */
  
   return;
}
引用调用

向函数传递参数的引用调用方法,把引用的地址复制给形式参数。在函数内,该引用用于访问调用中要用到的实际参数。这意味着,修改形式参数会影响实际参数。
按引用传递值,参数引用被传递给函数,就像传递其他值给函数一样。

// 函数定义
void swap(int &x, int &y)
{
   int temp;
   temp = x; /* 保存地址 x 的值 */
   x = y;    /* 把 y 赋值给 x */
   y = temp; /* 把 x 赋值给 y  */
  
   return;
}
question 1:引用和指针的区别?

★ 相同点:

  1. 都是地址的概念;
    指针指向一块内存,它的内容是所指内存的地址;引用是某块内存的别名。

★ 区别:

  1. 指针是一个实体,而引用仅是个别名;
  2. 引用使用时无需解引用(*),指针需要解引用;
  3. 引用只能在定义时被初始化一次,之后不可变;指针可变;
  4. 引用没有 const,指针有 const;
  5. 引用不能为空,指针可以为空;
  6. “sizeof 引用”得到的是所指向的变量(对象)的大小,而“sizeof 指针”得到的是指针本身(所指向的变量或对象的地址)的大小;
  7. 指针和引用的自增(++)运算意义不一样;
    8、从内存分配上看:程序为指针变量分配内存区域,而引用不需要分配内存区域。

数字

类型:

  • short
  • int
  • long
  • float
  • double

随机数

在许多情况下,需要生成随机数。关于随机数生成器,有两个相关的函数。一个是 rand(),该函数只返回一个伪随机数。生成随机数之前必须先调用 srand() 函数。
实例中使用了 time() 函数来获取系统时间的秒数,通过调用 rand() 函数来生成随机数:

#include 
#include 
#include 
 
using namespace std;
 
int main ()
{
   int i,j;
 
   // 设置种子
   srand( (unsigned)time( NULL ) );
 
   /* 生成 10 个随机数 */
   for( i = 0; i < 10; i++ )
   {
      // 生成实际的随机数
      j= rand();
      cout <<"随机数: " << j << endl;
   }
 
   return 0;
}

数组

所有的数组都是由连续的内存位置组成。最低的地址对应第一个元素,最高的地址对应最后一个元素。
C++ review(一)_第15张图片

声明数组

在 C++ 中要声明一个数组,需要指定元素的类型和元素的数量,如下所示:

type arrayName [ arraySize ];

这叫做一维数组。arraySize 必须是一个大于零的整数常量,type 可以是任意有效的 C++ 数据类型。

初始化数组

可以逐个初始化数组,也可以使用一个初始化语句,如下所示:

double balance[5] = {1000.0, 2.0, 3.4, 7.0, 50.0};

多维数组

C++ review(一)_第16张图片

初始化二维数组
int a[3][4] = {  
 {0, 1, 2, 3} ,   /*  初始化索引号为 0 的行 */
 {4, 5, 6, 7} ,   /*  初始化索引号为 1 的行 */
 {8, 9, 10, 11}   /*  初始化索引号为 2 的行 */
};

等同于:

int a[3][4] = {0,1,2,3,4,5,6,7,8,9,10,11};

指向数组的指针

数组名是一个指向数组中第一个元素的常量指针。因此,在下面的声明中:

double balance[50];

balance 是一个指向 &balance[0] (balance[0]的地址)的指针,即数组 balance 的第一个元素的地址。
下面的程序片段把 p 赋值为 balance 的第一个元素的地址:

double *p;
double balance[10];

p = balance;

*(balance + 4) 是一种访问 balance[4] 数据的合法方式。
一旦您把第一个元素的地址存储在 p 中,您就可以使用 p、(p+1)、*(p+2) 等来访问数组元素。

* 加上 指针 是取指针对应的值。

一旦我们有了 p 中的地址,*p 将给出存储在 p 中相应地址的值

传递数组给函数

C++ 中您可以通过指定不带索引的数组名来传递一个指向数组的指针。
C++ 传数组给一个函数,数组类型自动转换为指针类型,因而传的实际是地址

形式参数是一个指针:

void myFunction(int *param)
{
.
.
.
}

形式参数是一个已定义大小的数组:

void myFunction(int param[10])
{
.
.
.
}

形式参数是一个未定义大小的数组:

void myFunction(int param[])
{
.
.
.
}

就函数而言,数组的长度是无关紧要的,因为 C++ 不会对形式参数执行边界检查。

如果您想要从函数返回一个一维数组,您必须声明一个返回指针的函数,如下:

int * myFunction()
{
.
.
.
}

C++ 不支持在函数外返回局部变量的地址,除非定义局部变量为 static 变量。

#include 
#include 
#include 
 
using namespace std;
 
// 要生成和返回随机数的函数
int * getRandom( )
{
  static int  r[10];
 
  // 设置种子
  srand( (unsigned)time( NULL ) );
  for (int i = 0; i < 10; ++i)
  {
    r[i] = rand();
    cout << r[i] << endl;
  }
 
  return r;
}
 
// 要调用上面定义函数的主函数
int main ()
{
   // 一个指向整数的指针
   int *p;
 
   p = getRandom();
   for ( int i = 0; i < 10; i++ )
   {
       cout << "*(p + " << i << ") : ";
       cout << *(p + i) << endl;
   }
 
   return 0;
}

字符串

C++ review(一)_第17张图片
C++ 编译器会在初始化数组时,自动把 ‘\0’ 放在字符串的末尾。让我们尝试输出上面的字符串:

#include 
 
using namespace std;
 
int main ()
{
   char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0'};
 
   cout << "Greeting message: ";
   cout << greeting << endl;
 
   return 0;
}

C++ 中有大量的函数用来操作以 null 结尾的字符串:supports a wide range of functions that manipulate null-terminated strings:
C++ review(一)_第18张图片

String 类

#include 
#include 
 
using namespace std;
 
int main ()
{
   string str1 = "Hello";
   string str2 = "World";
   string str3;
   int  len ;
 
   // 复制 str1 到 str3
   str3 = str1;
   cout << "str3 : " << str3 << endl;
 
   // 连接 str1 和 str2
   str3 = str1 + str2;
   cout << "str1 + str2 : " << str3 << endl;
 
   // 连接后,str3 的总长度
   len = str3.size();
   cout << "str3.size() :  " << len << endl;
 
   return 0;
}

指针

每一个变量都有一个内存位置,每一个内存位置都定义了可使用连字号(&)运算符访问的地址,它表示了在内存中的一个地址。请看下面的实例,它将输出定义的变量地址:


#include 
 
using namespace std;
 
int main ()
{
   int  var1;
   char var2[10];
 
   cout << "var1 变量的地址: ";
   cout << &var1 << endl;
 
   cout << "var2 变量的地址: ";
   cout << &var2 << endl;
 
   return 0;
}

用来声明指针的星号 * 与乘法中使用的星号是相同的。但是,在这个语句中,星号是用来指定一个变量是指针。以下是有效的指针声明:

int    *ip;    /* 一个整型的指针 */
double *dp;    /* 一个 double 型的指针 */
float  *fp;    /* 一个浮点型的指针 */
char   *ch;    /* 一个字符型的指针 */
#include 
 
using namespace std;
 
int main ()
{
   int  var = 20;   // 实际变量的声明
   int  *ip;        // 指针变量的声明
 
   ip = &var;       // 在指针变量中存储 var 的地址
 
   cout << "Value of var variable: ";
   cout << var << endl;
 
   // 输出在指针变量中存储的地址
   cout << "Address stored in ip variable: ";
   cout << ip << endl;
 
   // 访问指针中地址的值
   cout << "Value of *ip variable: ";
   cout << *ip << endl;
 
   return 0;
}

输出结果为:

Value of var variable: 20
Address stored in ip variable: 0xbfc601ac
Value of *ip variable: 20

Null 指针

在变量声明的时候,如果没有确切的地址可以赋值,为指针变量赋一个 NULL 值是一个良好的编程习惯。赋为 NULL 值的指针被称为空指针。

NULL 指针是一个定义在标准库中的值为零的常量。请看下面的程序:

#include 

using namespace std;

int main ()
{
   int  *ptr = NULL;

   cout << "ptr 的值是 " << ptr ;
 
   return 0;
}

ptr 的值是 0

指针中存的是地址,int *p; cout<< p 得到的是地址,cout<<*p得到的是 p所指向的值。

指针的算术运算

递增一个指针
我们喜欢在程序中使用指针代替数组,**因为变量指针可以递增,**而数组不能递增,因为数组是一个常量指针。下面的程序递增变量指针,以便顺序访问数组中的每一个元素:

#include 
 
using namespace std;
const int MAX = 3;
 
int main ()
{
   int  var[MAX] = {10, 100, 200};
   int  *ptr;
 
   // 指针中的数组地址
   ptr = var;
   for (int i = 0; i < MAX; i++)
   {
      cout << "Address of var[" << i << "] = ";
      cout << ptr << endl;
 
      cout << "Value of var[" << i << "] = ";
      cout << *ptr << endl;
 
      // 移动到下一个位置
      ptr++;
   }
   return 0;
}

指针的比较
指针可以用关系运算符进行比较,如 ==、< 和 >。如果 p1 和 p2 指向两个相关的变量,比如同一个数组中的不同元素,则可对 p1 和 p2 进行大小比较。

下面的程序修改了上面的实例,只要变量指针所指向的地址小于或等于数组的最后一个元素的地址 &var[MAX - 1],则把变量指针进行递增:

#include 
 
using namespace std;
const int MAX = 3;
 
int main ()
{
   int  var[MAX] = {10, 100, 200};
   int  *ptr;
 
   // 指针中第一个元素的地址
   ptr = var;
   int i = 0;
   while ( ptr <= &var[MAX - 1] )
   {
      cout << "Address of var[" << i << "] = ";
      cout << ptr << endl;
 
      cout << "Value of var[" << i << "] = ";
      cout << *ptr << endl;
 
      // 指向上一个位置
      ptr++;
      i++;
   }
   return 0;
}

指针 vs 数组

把指针运算符 * 应用到 var 上是完全可以的,但修改 var 的值是非法的。这是因为 var 是一个指向数组开头的常量,不能作为左值。
由于一个数组名对应一个指针常量,只要不改变数组的值,仍然可以用指针形式的表达式。例如,下面是一个有效的语句,把 var[2] 赋值为 500:

*(var + 2) = 500;

指向指针的指针(多级间接寻址)

当我们定义一个指向指针的指针时,第一个指针包含了第二个指针的地址,第二个指针指向包含实际值的位置。
在这里插入图片描述
一个指向指针的指针变量必须如下声明,即在变量名前放置两个星号。例如,下面声明了一个指向 int 类型指针的指针:

int **var;
#include 
 
using namespace std;
 
int main ()
{
    int  var;
    int  *ptr;
    int  **pptr;
 
    var = 3000;
 
    // 获取 var 的地址
    ptr = &var;
 
    // 使用运算符 & 获取 ptr 的地址
    pptr = &ptr;
 
    // 使用 pptr 获取值
    cout << "var 值为 :" << var << endl;
    cout << "*ptr 值为:" << *ptr << endl;
    cout << "**pptr 值为:" << **pptr << endl;
 
    return 0;
}

当上面的代码被编译和执行时,它会产生下列结果:

var 值为 :3000
*ptr 值为:3000
**pptr 值为:3000

引用

引用变量是一个别名,也就是说,它是某个已存在变量的另一个名字。一旦把引用初始化为某个变量,就可以使用该引用名称或变量名称来指向变量。

引用 vs 指针

引用很容易与指针混淆,它们之间有三个主要的不同:

  1. 不存在空引用。引用必须连接到一块合法的内存。
  2. 一旦引用被初始化为一个对象,就不能被指向到另一个对象。指针可以在任何时候指向到另一个对象。
  3. 引用必须在创建时被初始化。指针可以在任何时间被初始化。

创建引用

int i = 17;
int&  r = i;

在这些声明中,& 读作引用。因此,第一个声明可以读作 “r 是一个初始化为 i 的整型引用”。

#include 
 
using namespace std;
 
int main ()
{
   // 声明简单的变量
   int    i;
   double d;
 
   // 声明引用变量
   int&    r = i;
   double& s = d;
   
   i = 5;
   cout << "Value of i : " << i << endl;
   cout << "Value of i reference : " << r  << endl;
 
   d = 11.7;
   cout << "Value of d : " << d << endl;
   cout << "Value of d reference : " << s  << endl;
   
   return 0;
}

把引用作为参数

#include 
using namespace std;
 
// 函数声明
void swap(int& x, int& y);
 
int main ()
{
   // 局部变量声明
   int a = 100;
   int b = 200;
 
   cout << "交换前,a 的值:" << a << endl;
   cout << "交换前,b 的值:" << b << endl;
 
   /* 调用函数来交换值 */
   swap(a, b);
 
   cout << "交换后,a 的值:" << a << endl;
   cout << "交换后,b 的值:" << b << endl;
 
   return 0;
}
 
// 函数定义
void swap(int& x, int& y)
{
   int temp;
   temp = x; /* 保存地址 x 的值 */
   x = y;    /* 把 y 赋值给 x */
   y = temp; /* 把 x 赋值给 y  */
  
   return;
}

结果:

交换前,a 的值: 100
交换前,b 的值: 200
交换后,a 的值: 200
交换后,b 的值: 100

在调用swap函数,传输的是a、b本身。

把引用作为返回值

当函数返回一个引用时,则返回一个指向返回值的隐式指针。这样,函数就可以放在赋值语句的左边。例如,请看下面这个简单的程序:

#include 
 
using namespace std;
 
double vals[] = {10.1, 12.6, 33.1, 24.1, 50.0};
 
double& setValues( int i )
{
  return vals[i];   // 返回第 i 个元素的引用
}
 
// 要调用上面定义函数的主函数
int main ()
{
 
   cout << "改变前的值" << endl;
   for ( int i = 0; i < 5; i++ )
   {
       cout << "vals[" << i << "] = ";
       cout << vals[i] << endl;
   }
 
   setValues(1) = 20.23; // 改变第 2 个元素
   setValues(3) = 70.8;  // 改变第 4 个元素
 
   cout << "改变后的值" << endl;
   for ( int i = 0; i < 5; i++ )
   {
       cout << "vals[" << i << "] = ";
       cout << vals[i] << endl;
   }
   return 0;
}

当返回一个引用时,要注意被引用的对象不能超出作用域。所以返回一个对局部变量的引用是不合法的,但是,可以返回一个对静态变量的引用。

int& func() {
   int q;
   //! return q; // 在编译时发生错误
   static int x;
   return x;     // 安全,x 在函数作用域外依然是有效的
}

你可能感兴趣的:(C/C++)