粒子群算法理解+求解01背包问题

最近在学群体优化算法,做个学习笔记吧,本人蒟蒻,有不对的地方还情多多包涵。

1.粒子群算法的理解。

        粒子群算法是一种智能优化算法,模拟的是鸟内捕食行为。假设有一群鸟,在一个区域内觅食,这个区域内只有一个食物(最优解),但是每个鸟只知道自己距食物的距离,还有靠食物最近的鸟的距离(群体最优解),这样,他们的觅食行为就收到三个方面的约束。

     (1)距离食物最近的鸟的位置,这样所有的其他鸟都会向这只鸟靠拢,即所有点都会向当前全局最优解学习,靠拢。

     (2)光有全局最优解,最后得到的解最优也只能是初始状态的最优解,因此,每个鸟在靠近全局最优解的过程中也会计算自己与食物之间的距离,有可能在某一时刻,自己的距离比全局最优解还近,那么更新全局最优解,同时变更群体的学习方向。这就是个体最优解。

     (3)自身惯性。这是粒子继承先前速度的能力。一个较大的惯性有助于全局搜索,而一个较小的惯性有助于局部搜索。因此,在平常设计中,我们将惯性w设置为动态惯性,确保前期全局搜索能力强,但在后期局部搜索能力强,从而提高算法精度。

       所以,假设在一个D维的搜索空间中,由n个粒子组成的种群X=(X1,X2....Xn),其中第i个粒子向量表示为Xi=(Xi1,Xi2....Xin)^{^{T}},表示粒子在D维搜索空间的位置,第i个粒子的速度为Vi=(vi1,vi2,vi3.....vin)^{^{T}},个体极值为Pi=(pi1,pi2....pin)^{^{T}},种群极值为Pg=(pi1,pi2....pin)^{^{T}};

则速度更新公式为

V_{id}^{k+1}=wV_{id}^{k}+c1r1(P_{id}^{k}-X_{id}^{k})+c2r2(P_{gd}^{k}-X_{id}^{k})

X_{id}^{k+1}=X_{id}^{k}+V^{_{id}^{k+1}}

其中,w为惯性权重,k为迭代次数,Vid为粒子的速度;c1和c2为非负常数,也叫作加速度因子;r1和r2为【0,1】的分布随机数。

2.粒子群算法的求解过程。

这里我们以01背包问题为例来模拟粒子群算法。01背包问题是著名的非线性寻优问题,适应度由价格和体积决定,而质量是总约束条件。整个算法流程看代码吧,很清晰易懂的。

     

clear;
clc;
close all;

a=[95,4,60,32,23,72,80,62,65,46];        %物品体积
c=[55,10,47,5,4,50,8,61,85,87];          %物品价值
b=269;                                    %背包重量

%初始化种群
Dim=10;           %维度
xSize=20;         %种群数
maxgen=30;        %迭代次数
c1=0.7;
c2=0.7;           %加速因子
w=0.8;            %定义惯性因子
%
A=repmat(a,xSize,1);      %将a扩展成30*10的矩阵
C=repmat(c,xSize,1);      %c扩展为30*10的矩阵
x=round(rand(xSize,Dim)); %随机一个30*10的矩阵
v=rand(xSize,Dim)         %随机一个30*10的速度矩阵
xbest=zeros(xSize,Dim);   %单个粒子的初始最佳位置
fxbest=zeros(xSize,1);    %xbext的适应度
gbest=zeros(1,Dim);       %全局最优解
fgbest=0;                 %全局最优解的适应度
%
%寻找粒子群最优位置和单个粒子
iter=0;
while iter269
            fx(i)=0;         %超过体积,适应度为0
        end
    end
    for i=1:xSize
        if fxbest(i)

  最后的结果中,gbest的结果,0代表没选,1代表选。

你可能感兴趣的:(智能算法)