目标检测学习路线【基础知识+论文入门】

个人路线,仅供参考

一、基础知识补充

初步看完吴恩达机器学习之后,开始看目标检测论文之前,我发现有些目标检测基础是非看不可的,所以按照下列顺序进行了知识补充

(大家有时间还是应该一步一步来呀 不要学我 感觉这样突击很心虚)

感觉刘建平老师这一套真的讲的好清楚,但是反向传播那块我还是没太懂,就找到了另一个博客,也挺好

梯度下降(Gradient Descent)小结

感知机原理小结

深度神经网络(DNN)模型与前向传播算法

深度神经网络(DNN)反向传播算法(BP) 

神经网络--反向传播详细推导过程

深度神经网络(DNN)损失函数和激活函数的选择

深度神经网络(DNN)的正则化

卷积神经网络(CNN)模型结构

卷积神经网络(CNN)前向传播算法

卷积神经网络超详细介绍

二、最新综述

在知网找几篇最新的综述,大概读一下

三、必读经典论文

此部分参考自 https://blog.csdn.net/u010552731/article/details/95385187

原博客非常全,我这里只是挑了必读的做整理,一共有十四篇

阅读参考图:

目标检测学习路线【基础知识+论文入门】_第1张图片

图也是从原博客搬来的~~

1[R-CNN] Rich feature hierarchies for accurate object detection and semantic segmentation | [CVPR’ 14]

 

论文链接:https://arxiv.org/abs/1311.2524

github源码:https://github.com/rbgirshick/rcnn

 

2、[OverFeat] OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks | [ICLR’ 14]

论文链接:https://arxiv.org/pdf/1312.6229.pdf

github源码:https://github.com/sermanet/OverFeat

 

3、[Fast R-CNN] Fast R-CNN [ICCV’ 15]

论文链接:https://arxiv.org/abs/1504.08083

github源码:https://github.com/rbgirshick/fast-rcnn

 

4、[Faster R-CNN, RPN] Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks | [NIPS’ 15]

论文链接:https://arxiv.org/abs/1506.01497

github源码:https://github.com/rbgirshick/py-faster-rcnn

非官方源码:https://github.com/jwyang/faster-rcnn.pytorch

https://github.com/endernewton/tf-faster-rcnn

 

5、[OHEM] Training Region-based Object Detectors with Online Hard Example Mining | [CVPR’ 16]

论文链接:https://arxiv.org/pdf/1604.03540.pdf

github源码:https://github.com/abhi2610/ohem

 

6、[YOLO v1] You Only Look Once: Unified, Real-Time Object Detection |[CVPR’ 16] |

论文链接:https://arxiv.org/pdf/1506.02640.pdf

源码:https://pjreddie.com/darknet/yolo/

 

7[SSD] SSD: Single Shot MultiBox Detector | [ECCV’ 16]

论文链接:https://arxiv.org/abs/1506.01497

源码:https://github.com/weiliu89/caffe/tree/ssd

https://github.com/balancap/SSD-Tensorflow

https://github.com/amdegroot/ssd.pytorch

 

8、[R-FCN] R-FCN: Object Detection via Region-based Fully Convolutional Networks | [NIPS’ 16]

论文链接:https://arxiv.org/pdf/1605.06409.pdf

源码:https://github.com/daijifeng001/R-FCN

https://github.com/YuwenXiong/py-R-FCN

 

9、[YOLO v2] YOLO9000: Better, Faster, Stronger | [CVPR’ 17]

论文链接:https://arxiv.org/pdf/1612.08242.pdf

 [official code - c]https://pjreddie.com/darknet/yolo/

[unofficial code - tensorflow]https://github.com/nilboy/tensorflow-yolo

[unofficial code - tensorflow] https://github.com/sualab/object-detection-yolov2-tf

[unofficial code - pytorch]https://github.com/longcw/yolo2-pytorch

 

10、[RetinaNet] Focal Loss for Dense Object Detection | [ICCV’ 17]

论文链接:https://arxiv.org/pdf/1708.02002.pdf

[official code - keras] https://github.com/fizyr/keras-retinanet

[unofficial code - pytorch] https://github.com/kuangliu/pytorch-retinanet

[unofficial code - mxnet]https://github.com/unsky/RetinaNet

 [unofficial code - tensorflow]https://github.com/tensorflow/tpu/tree/master/models/official/retinanet

 

11

[Mask R-CNN] Mask R-CNN | [ICCV’ 17]

|[pdf] :http://openaccess.thecvf.com/content_ICCV_2017/papers/He_Mask_R-CNN_ICCV_2017_paper.pdf

 [official code - caffe2] https://github.com/facebookresearch/Detectron

[unofficial code - tensorflow] https://github.com/matterport/Mask_RCNN

[unofficial code - tensorflow]https://github.com/CharlesShang/FastMaskRCNN

 [unofficial code - pytorch]https://github.com/multimodallearning/pytorch-mask-rcnn

 

12、[YOLO v3] YOLOv3: An Incremental Improvement | [arXiv’ 18]

|[pdf] https://pjreddie.com/media/files/papers/YOLOv3.pdf

[official code - c]https://pjreddie.com/darknet/yolo/

 [unofficial code - pytorch] https://github.com/ayooshkathuria/pytorch-yolo-v3

[unofficial code - pytorch] https://github.com/eriklindernoren/PyTorch-YOLOv3

[unofficial code - keras] https://github.com/qqwweee/keras-yolo3

[unofficial code - tensorflow]https://github.com/mystic123/tensorflow-yolo-v3

 

13、[RefineDet] Single-Shot Refinement Neural Network for Object Detection | [CVPR’ 18] |

[pdf] http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Single-Shot_Refinement_Neural_CVPR_2018_paper.pdf

[official code - caffe]https://github.com/sfzhang15/RefineDet

[unofficial code - chainer]  https://github.com/fukatani/RefineDet_chainer

[unofficial code - pytorch]https://github.com/lzx1413/PytorchSSD

 

14、[M2Det] M2Det: A Single-Shot Object Detector based on Multi-Level Feature Pyramid Network | [AAAI’ 19]

[pdf]https://arxiv.org/pdf/1811.04533.pdf

[official code - pytorch]https://github.com/qijiezhao/M2Det

 

三、最新顶会论文

慢慢补充~

你可能感兴趣的:(目标检测,机器学习,论文)