个人路线,仅供参考
初步看完吴恩达机器学习之后,开始看目标检测论文之前,我发现有些目标检测基础是非看不可的,所以按照下列顺序进行了知识补充
(大家有时间还是应该一步一步来呀 不要学我 感觉这样突击很心虚)
感觉刘建平老师这一套真的讲的好清楚,但是反向传播那块我还是没太懂,就找到了另一个博客,也挺好
梯度下降(Gradient Descent)小结
感知机原理小结
深度神经网络(DNN)模型与前向传播算法
深度神经网络(DNN)反向传播算法(BP)
神经网络--反向传播详细推导过程
深度神经网络(DNN)损失函数和激活函数的选择
深度神经网络(DNN)的正则化
卷积神经网络(CNN)模型结构
卷积神经网络(CNN)前向传播算法
卷积神经网络超详细介绍
在知网找几篇最新的综述,大概读一下
此部分参考自 https://blog.csdn.net/u010552731/article/details/95385187
原博客非常全,我这里只是挑了必读的做整理,一共有十四篇
阅读参考图:
图也是从原博客搬来的~~
1、[R-CNN] Rich feature hierarchies for accurate object detection and semantic segmentation | [CVPR’ 14]
论文链接:https://arxiv.org/abs/1311.2524
github源码:https://github.com/rbgirshick/rcnn
☐ 2、[OverFeat] OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks | [ICLR’ 14]
论文链接:https://arxiv.org/pdf/1312.6229.pdf
github源码:https://github.com/sermanet/OverFeat
☐ 3、[Fast R-CNN] Fast R-CNN [ICCV’ 15]
论文链接:https://arxiv.org/abs/1504.08083
github源码:https://github.com/rbgirshick/fast-rcnn
☐ 4、[Faster R-CNN, RPN] Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks | [NIPS’ 15]
论文链接:https://arxiv.org/abs/1506.01497
github源码:https://github.com/rbgirshick/py-faster-rcnn
非官方源码:https://github.com/jwyang/faster-rcnn.pytorch
https://github.com/endernewton/tf-faster-rcnn
☐ 5、[OHEM] Training Region-based Object Detectors with Online Hard Example Mining | [CVPR’ 16]
论文链接:https://arxiv.org/pdf/1604.03540.pdf
github源码:https://github.com/abhi2610/ohem
☐ 6、[YOLO v1] You Only Look Once: Unified, Real-Time Object Detection |[CVPR’ 16] |
论文链接:https://arxiv.org/pdf/1506.02640.pdf
源码:https://pjreddie.com/darknet/yolo/
☐ 7、[SSD] SSD: Single Shot MultiBox Detector | [ECCV’ 16]
论文链接:https://arxiv.org/abs/1506.01497
源码:https://github.com/weiliu89/caffe/tree/ssd
https://github.com/balancap/SSD-Tensorflow
https://github.com/amdegroot/ssd.pytorch
☐ 8、[R-FCN] R-FCN: Object Detection via Region-based Fully Convolutional Networks | [NIPS’ 16]
论文链接:https://arxiv.org/pdf/1605.06409.pdf
源码:https://github.com/daijifeng001/R-FCN
https://github.com/YuwenXiong/py-R-FCN
☐ 9、[YOLO v2] YOLO9000: Better, Faster, Stronger | [CVPR’ 17]
论文链接:https://arxiv.org/pdf/1612.08242.pdf
[official code - c]:https://pjreddie.com/darknet/yolo/
[unofficial code - tensorflow]: https://github.com/nilboy/tensorflow-yolo
[unofficial code - tensorflow] :https://github.com/sualab/object-detection-yolov2-tf
[unofficial code - pytorch]:https://github.com/longcw/yolo2-pytorch
☐ 10、[RetinaNet] Focal Loss for Dense Object Detection | [ICCV’ 17]
论文链接:https://arxiv.org/pdf/1708.02002.pdf
[official code - keras] :https://github.com/fizyr/keras-retinanet
[unofficial code - pytorch] :https://github.com/kuangliu/pytorch-retinanet
[unofficial code - mxnet]:https://github.com/unsky/RetinaNet
[unofficial code - tensorflow]:https://github.com/tensorflow/tpu/tree/master/models/official/retinanet
☐ 11、
[Mask R-CNN] Mask R-CNN | [ICCV’ 17]
|[pdf] :http://openaccess.thecvf.com/content_ICCV_2017/papers/He_Mask_R-CNN_ICCV_2017_paper.pdf
[official code - caffe2] :https://github.com/facebookresearch/Detectron
[unofficial code - tensorflow] :https://github.com/matterport/Mask_RCNN
[unofficial code - tensorflow]:https://github.com/CharlesShang/FastMaskRCNN
[unofficial code - pytorch]:https://github.com/multimodallearning/pytorch-mask-rcnn
☐ 12、[YOLO v3] YOLOv3: An Incremental Improvement | [arXiv’ 18]
|[pdf] :https://pjreddie.com/media/files/papers/YOLOv3.pdf
[official code - c]:https://pjreddie.com/darknet/yolo/
[unofficial code - pytorch] :https://github.com/ayooshkathuria/pytorch-yolo-v3
[unofficial code - pytorch] :https://github.com/eriklindernoren/PyTorch-YOLOv3
[unofficial code - keras] :https://github.com/qqwweee/keras-yolo3
[unofficial code - tensorflow]:https://github.com/mystic123/tensorflow-yolo-v3
☐ 13、[RefineDet] Single-Shot Refinement Neural Network for Object Detection | [CVPR’ 18] |
[pdf] :http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Single-Shot_Refinement_Neural_CVPR_2018_paper.pdf
[official code - caffe]:https://github.com/sfzhang15/RefineDet
[unofficial code - chainer] :https://github.com/fukatani/RefineDet_chainer
[unofficial code - pytorch]:https://github.com/lzx1413/PytorchSSD
☐ 14、[M2Det] M2Det: A Single-Shot Object Detector based on Multi-Level Feature Pyramid Network | [AAAI’ 19]
[pdf]:https://arxiv.org/pdf/1811.04533.pdf
[official code - pytorch]:https://github.com/qijiezhao/M2Det
慢慢补充~