Spark写入数据到Hbase(上)

这是个踩坑的过程,上篇的虽然跑通了,但是其实版本配置有问题,记得看下篇
环境配置:
Scala:2.12.1
Spark:2.4.4
Hbase:2.2.3


前言:
前面有篇文章我使用了pyspark,弄得我很累,感觉python开发确实没那么好,看了些网上的文章和问了下朋友决定还是学学使用scala。(可以看看这个,我觉得挺有道理的.)
环境:
因为我也是第一次搞scala,如果你们也是的话,可以参考一下:
windows上 IntelliJ IDEA安装scala环境 详细 初学.
IDEA 开发 scala.

代码:

这里我参考了这个:http://dblab.xmu.edu.cn/blog/1316-2/.

只要代码测试成功了我再往下写,可是因为环境版本不一样,我改了一些地方的。

我们先建表和插入一些数据进去:(复制黏贴到hbase shell里面就一次过全部执行了,我是不是很贴心)

create 'student','info'
put 'student','1','info:name','Xueqian'
put 'student','1','info:gender','F'
put 'student','1','info:age','23'
put 'student','2','info:name','Weiliang'
put 'student','2','info:gender','M'
put 'student','2','info:age','24'

Pom

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>com.shct</groupId>
    <artifactId>sparkhbasetest</artifactId>
    <version>1.0-SNAPSHOT</version>


    <properties>
        <jdk.version>1.8</jdk.version>
        <scala.version>2.12.1</scala.version>
        <spark.version>2.4.4</spark.version>
        <hadoop.version>3.1.2</hadoop.version>
        <hbase.version>2.2.3</hbase.version>
    </properties>
    <dependencies>
        <!--scala-->
        <dependency>
            <groupId>org.scala-lang</groupId>
            <artifactId>scala-library</artifactId>
            <version>${scala.version}</version>
        </dependency>

        <dependency>
            <groupId>org.scala-lang</groupId>
            <artifactId>scala-reflect</artifactId>
            <version>${scala.version}</version>
        </dependency>
        <dependency>
            <groupId>org.scala-lang</groupId>
            <artifactId>scala-compiler</artifactId>
            <version>${scala.version}</version>
        </dependency>

        <!--spark-core-->
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.11</artifactId>
            <version>${spark.version}</version>
        </dependency>

        <!--hadoop-->
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>${hadoop.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>${hadoop.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-hdfs</artifactId>
            <version>${hadoop.version}</version>
        </dependency>

        <!--hbase-->
        <dependency>
            <groupId>org.apache.hbase</groupId>
            <artifactId>hbase-client</artifactId>
            <version>${hbase.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hbase</groupId>
            <artifactId>hbase-server</artifactId>
            <version>${hbase.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hbase</groupId>
            <artifactId>hbase</artifactId>
            <version>${hbase.version}</version>
            <type>pom</type>
        </dependency>
        <dependency>
            <groupId>org.apache.hbase</groupId>
            <artifactId>hbase-mapreduce</artifactId>
            <version>${hbase.version}</version>
        </dependency>

    </dependencies>

    <build>
        <sourceDirectory>src/main/scala</sourceDirectory>
        <plugins>
            <plugin>
                <groupId>org.scala-tools</groupId>
                <artifactId>maven-scala-plugin</artifactId>
                <version>2.15.2</version>
                <executions>
                    <execution>
                        <goals>
                            <goal>compile</goal>
                            <goal>testCompile</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-shade-plugin</artifactId>
                <version>3.1.0</version>
                <executions>
                    <execution>
                        <phase>package</phase>
                        <goals>
                            <goal>shade</goal>
                        </goals>
                        <configuration>
                            <createDependencyReducedPom>false</createDependencyReducedPom>
                            <filters>
                                <filter>
                                    <artifact>*:*</artifact>
                                    <excludes>
                                        <exclude>META-INF/*.SF</exclude>
                                        <exclude>META-INF/*.DSA</exclude>
                                        <exclude>META-INF/*.RSA</exclude>
                                    </excludes>
                                </filter>
                            </filters>
                            <transformers>
                                <transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
                                    <mainClass>com.test.SparkCount</mainClass>
                                </transformer>
                            </transformers>

                        </configuration>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>

</project>

读取:

import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.hbase._
import org.apache.hadoop.hbase.client._
import org.apache.hadoop.hbase.io.ImmutableBytesWritable
import org.apache.hadoop.hbase.util.Bytes
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
import org.apache.hadoop.hbase.mapreduce.TableInputFormat

object sparkHbaseRead {
  def main(args:Array[String]): Unit ={
    val conf=HBaseConfiguration.create()
    val sc = new SparkContext(new SparkConf())
    //设置查询的表名
//    conf.set("hbase.mapreduce.inputtable", "Studet")
    conf.set(TableInputFormat.INPUT_TABLE,"student")
    conf.set("zookeeper.znode.parent","/hbase-unsecure")
    conf.set("hbase.zookeeper.property.clientPort", "2181")
    val stuRDD = sc.newAPIHadoopRDD(conf, classOf[TableInputFormat],
      classOf[org.apache.hadoop.hbase.io.ImmutableBytesWritable],
      classOf[org.apache.hadoop.hbase.client.Result])
    val count = stuRDD.count()
    println("Students RDD Count:" + count)
    stuRDD.cache()

    stuRDD.foreach({ case (_,result) =>
      val key = Bytes.toString(result.getRow)
      val name = Bytes.toString(result.getValue("info".getBytes,"name".getBytes))
      val gender = Bytes.toString(result.getValue("info".getBytes,"gender".getBytes))
      val age = Bytes.toString(result.getValue("info".getBytes,"age".getBytes))
      println("Row key:"+key+" Name:"+name+" Gender:"+gender+" Age:"+age)
    })
  }
}

这里修改的地方是,加入了zookeeper.znode.parent的配置,如果不配置的话有可能会出现以下错误:

java.util.concurrent.ExecutionException: org.apache.zookeeper.KeeperException$NoNodeException: KeeperErrorCode = NoNode for /hbase/hbaseid
Caused by: java.io.IOException: org.apache.zookeeper.KeeperException$NoNodeException: KeeperErrorCode = NoNode for /hbase

zookeeper.znode.parent是你的Hbase里的配置文件hbase-site.xml的配置,如果你的这个配置文件没有写这一项的话,则不需要写


写入:

import org.apache.hadoop.hbase.HBaseConfiguration
import org.apache.hadoop.hbase.mapreduce.TableOutputFormat
import org.apache.spark._
import org.apache.hadoop.mapreduce.Job
import org.apache.hadoop.hbase.io.ImmutableBytesWritable
import org.apache.hadoop.hbase.client.Result
import org.apache.hadoop.hbase.client.Put
import org.apache.hadoop.hbase.util.Bytes



object spaekHbaseWrite {
  def main(args: Array[String]): Unit = {
    val sparkConf = new SparkConf().setAppName("SparkWriteHBase").setMaster("local")
    val sc = new SparkContext(sparkConf)
    val tablename = "student"
    // hbase 的连接设置
    val hconf = sc.hadoopConfiguration
    hconf.set("hbase.zookeeper.property.clientPort","2181")
    hconf.set("zookeeper.znode.parent","/hbase-unsecure")
    hconf.set("hbase.zookeeper.quorum","192.168.0.111")
    hconf.set(TableOutputFormat.OUTPUT_TABLE,tablename)

    
    val job = Job.getInstance(hconf)
    job.setOutputKeyClass(classOf[ImmutableBytesWritable])
    job.setOutputValueClass(classOf[Result])
    job.setOutputFormatClass(classOf[TableOutputFormat[ImmutableBytesWritable]])

    val indataRDD = sc.makeRDD(Array("7,小明,M,10","8,小红,F,12")) //构建两行记录

    val rdd = indataRDD.map(_.split(',')).map{arr=>{

    val put = new Put(Bytes.toBytes(arr(0))) //行健的值
//    put.add(Bytes.toBytes("info"),Bytes.toBytes("name"), Bytes.toBytes(arr(1)))  //info:name列的值
//    put.add(Bytes.toBytes("info"),Bytes.toBytes("gender"),Bytes.toBytes(arr(2)))  //info:gender列的值
//    put.add(Bytes.toBytes("info"),Bytes.toBytes("age"),Bytes.toBytes(arr(3)))  //info:age列的值
    put.addColumn(Bytes.toBytes("info"),Bytes.toBytes("name"), Bytes.toBytes(arr(1).toString)) //info:name列的值
    put.addColumn(Bytes.toBytes("info"),Bytes.toBytes("gender"),Bytes.toBytes(arr(2)))  //info:gender列的值
    put.addColumn(Bytes.toBytes("info"),Bytes.toBytes("age"),Bytes.toBytes(arr(3)))  //info:age列的值
      (new ImmutableBytesWritable, put)
    }}
    rdd.saveAsNewAPIHadoopDataset(job.getConfiguration)
    sc.stop()
  }
}

写入这里主要修改的还是在配置那里想办法加入了zookeeper.znode.parent,并且我发现put.add会报错,因为hbase在2.x.x之后,hbase-client的Put.add接口变了,从Put.add变成了 Put.addColumn。

你可能感兴趣的:(hbase,spark,scala)