ActiveMQ 概述

一、消息中间件概述

1.1消息中间件产生的背景

在客户端与服务器进行通讯时,客户端调用后,必须等待服务对象完成处理返回结果才能继续执行。

客户与服务器对象的生命周期紧密耦合,客户进程和服务对象进程都都必须正常运行;如果由于服务对象崩溃或者网络故障导致用户的请求不可达,客户会受到异常。

     点对点通信: 客户的一次调用只发送给某个单独的目标对象。

1.2什么是消息中间件

面向消息的中间件(MessageOrlented MiddlewareMOM)较好的解决了以上问题。发送者将消息发送给消息服务器,消息服务器将消息存放在若千队列中,在合适的时候再将消息转发给接收者。

这种模式下,发送和接收是异步的,发送者无需等待; 二者的生命周期未必相同: 发送消息的时候接收者不一定运行,接收消息的时候发送者也不一定运行;一对多通信: 对于一个消息可以有多个接收者。

二、JMS介绍

2.1什么是JMS?

JMS是java的消息服务,JMS的客户端之间可以通过JMS服务进行异步的消息传输。

2.2什么是消息模型?

○ Point-to-Point(P2P) --- 对点

○ Publish/Subscribe(Pub/Sub)---  发布订阅

即点对点和发布订阅模型

1、P2P(点对点)

ActiveMQ 概述_第1张图片

  1. 涉及到的概念 
    1. 消息队列(Queue)
    2. 发送者(Sender)
    3. 接收者(Receiver)
    4. 每个消息都被发送到一个特定的队列,接收者从队列中获取消息。队列保留着消息,直到他们被消费或超时。
  2. P2P的特点
    1. 每个消息只有一个消费者(Consumer)(即一旦被消费,消息就不再在消息队列中)
    2. 发送者和接收者之间在时间上没有依赖性,也就是说当发送者发送了消息之后,不管接收者有没有正在运行,它不会影响到消息被发送到队列
    3. 接收者在成功接收消息之后需向队列应答成功

           如果你希望发送的每个消息都应该被成功处理的话,那么你需要P2P模式

    应用场景

    A用户与B用户发送消息

2、Pub/Sub(发布与订阅)

Pub/Sub模式图 

ActiveMQ 概述_第2张图片

涉及到的概念 

主题(Topic)

发布者(Publisher)

订阅者(Subscriber) 
客户端将消息发送到主题。多个发布者将消息发送到Topic,系统将这些消息传递给多个订阅者。

Pub/Sub的特点

每个消息可以有多个消费者

发布者和订阅者之间有时间上的依赖性。针对某个主题(Topic)的订阅者,它必须创建一个订阅者之后,才能消费发布者的消息,而且为了消费消息,订阅者必须保持运行的状态。

为了缓和这样严格的时间相关性,JMS允许订阅者创建一个可持久化的订阅。这样,即使订阅者没有被激活(运行),它也能接收到发布者的消息。

如果你希望发送的消息可以不被做任何处理、或者被一个消息者处理、或者可以被多个消费者处理的话,那么可以采用Pub/Sub模型

消息的消费 
在JMS中,消息的产生和消息是异步的。对于消费来说,JMS的消息者可以通过两种方式来消费消息。 
○ 同步 
订阅者或接收者调用receive方法来接收消息,receive方法在能够接收到消息之前(或超时之前)将一直阻塞 
○ 异步 
订阅者或接收者可以注册为一个消息监听器。当消息到达之后,系统自动调用监听器的onMessage方法。

  应用场景:

   用户注册、订单修改库存、日志存储

ActiveMQ 概述_第3张图片ActiveMQ 概述_第4张图片

ActiveMQ 概述_第5张图片

三、MQ产品的分类

RabbitMQ

是使用Erlang编写的一个开源的消息队列,本身支持很多的协议:AMQP,XMPP, SMTP, STOMP,也正是如此,使的它变的非常重量级,更适合于企业级的开发。同时实现了一个经纪人(Broker)构架,这意味着消息在发送给客户端时先在中心队列排队。对路由(Routing),负载均衡(Load balance)或者数据持久化都有很好的支持。

Redis

是一个Key-Value的NoSQL数据库,开发维护很活跃,虽然它是一个Key-Value数据库存储系统,但它本身支持MQ功能,所以完全可以当做一个轻量级的队列服务来使用。对于RabbitMQ和Redis的入队和出队操作,各执行100万次,每10万次记录一次执行时间。测试数据分为128Bytes、512Bytes、1K和10K四个不同大小的数据。实验表明:入队时,当数据比较小时Redis的性能要高于RabbitMQ,而如果数据大小超过了10K,Redis则慢的无法忍受;出队时,无论数据大小,Redis都表现出非常好的性能,而RabbitMQ的出队性能则远低于Redis。

 

入队

出队

 

128B

512B

1K

10K

128B

512B

1K

10K

Redis

16088

15961

17094

25

15955

20449

18098

9355

RabbitMQ

10627

9916

9370

2366

3219

3174

2982

1588

ZeroMQ

号称最快的消息队列系统,尤其针对大吞吐量的需求场景。ZMQ能够实现RabbitMQ不擅长的高级/复杂的队列,但是开发人员需要自己组合多种技术框架,技术上的复杂度是对这MQ能够应用成功的挑战。ZeroMQ具有一个独特的非中间件的模式,你不需要安装和运行一个消息服务器或中间件,因为你的应用程序将扮演了这个服务角色。你只需要简单的引用ZeroMQ程序库,可以使用NuGet安装,然后你就可以愉快的在应用程序之间发送消息了。但是ZeroMQ仅提供非持久性的队列,也就是说如果down机,数据将会丢失。其中,Twitter的Storm中使用ZeroMQ作为数据流的传输。

ActiveMQ

是Apache下的一个子项目。 类似于ZeroMQ,它能够以代理人和点对点的技术实现队列。同时类似于RabbitMQ,它少量代码就可以高效地实现高级应用场景。RabbitMQ、ZeroMQ、ActiveMQ均支持常用的多种语言客户端 C++、Java、.Net,、Python、 Php、 Ruby等。

Jafka/Kafka

Kafka是Apache下的一个子项目,是一个高性能跨语言分布式Publish/Subscribe消息队列系统,而Jafka是在Kafka之上孵化而来的,即Kafka的一个升级版。具有以下特性:快速持久化,可以在O(1)的系统开销下进行消息持久化;高吞吐,在一台普通的服务器上既可以达到10W/s的吞吐速率;完全的分布式系统,Broker、Producer、Consumer都原生自动支持分布式,自动实现复杂均衡;支持Hadoop数据并行加载,对于像Hadoop的一样的日志数据和离线分析系统,但又要求实时处理的限制,这是一个可行的解决方案。Kafka通过Hadoop的并行加载机制来统一了在线和离线的消息处理,这一点也是本课题所研究系统所看重的。Apache Kafka相对于ActiveMQ是一个非常轻量级的消息系统,除了性能非常好之外,还是一个工作良好的分布式系统。

其他一些队列列表HornetQ、Apache Qpid、Sparrow、Starling、Kestrel、Beanstalkd、Amazon SQS就不再一一分析。

 

 

 

你可能感兴趣的:(ActiveMQ)