Pytorch学习笔记(III)——提取特征

目录

  • 一、引言
  • 二、具体步骤
    • 1、参数模型
    • 2、网络结构
    • 3、参数载入
    • 4、特征提取器
    • 5、读取图片
  • 三、完整代码

一、引言

  深度学习在许多任务中主要充当着特征学习的作用,而学习完的特征才是后续应用的一个关键。本文将主要介绍,如何提取任意目标层的特征图。
  本文以输入数据为图片为例。

二、具体步骤

1、参数模型

博主使用了ResNet50训练了一个人脸识别的网络

  训练完成的深度学习模型,我们会保存一个参数文件,文件中保存的是前期训练过的网络模型参数,如下图:

在这里插入图片描述

2、网络结构

  提取特征的时候又要分为两种情况,一种是只提取一层特征,另一种是提取多层特征。
一层特征:
  在提取一层特征的时候,我们不需要完整的网络结构,只需要在forward的时候截止到我们想要的那一层为止。从下述代码可以看到,我注释了fclass2这一层,因为这一层是在训练的时候用来计算损失,并不是我想要的。
所以我提取的是fclass1这一层的特征

class CNN(nn.Module):

    def __init__(self, block, layers, num_classes=10000):
        self.inplanes = 64
        super(CNN, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        self.avgpool = nn.AdaptiveAvgPool2d(output_size=(1,1))
        self.fclass1 = nn.Linear(2048, 199)
        # self.fclass2 = nn.Linear(199, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()

    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                            kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        x = self.avgpool(x)
        x = x.view(x.size(0), -1)

        x = self.fclass1(x)
        # x = self.fclass2(x)

        return x

多层特征:
  多层特征其实只要在forward的时候,return出不同层的值就可以了,具体就不多说了

3、参数载入

  其实这一步和我之前博客写的差不多,就是将.pkl文件中的网络参数,载入到本实验的程序中,不明白的地方,可以看之前的博客。

cnn = CNN(Bottleneck, [3, 4, 6, 3])
pretrained_dict = torch.load('/model/recognition/res50_net_params_253.pkl')
model1_dict = cnn.state_dict()
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model1_dict}
model1_dict.update(pretrained_dict)
cnn.load_state_dict(model1_dict)
cnn = cnn.cuda()

4、特征提取器

  准备工作做完之后,我们就要设计一个特征提取器了,我是写成了子程序的形式,你也可以直接写在主程序中。

## 这段代码,一次只处理一张图片。img_path为图片的路径,save_path是特征保存的npy文件的路径,net就是我们的网络了
def extractors(img_path, sava_path, net):
#在上一篇博客有提到,pytorch处理的数据一定要是tensor的形式,所以transform就是将图片转为tensor,必须加,加多少看需要
    transform = transforms.Compose([
        # transforms.Resize(256),
        # transforms.CenterCrop(224),
        transforms.ToTensor()]
    )
    img = Image.open(img_path)
    img = transform(img)
    #在训练的时候,数据的第一维代表的是batch_size,虽然我们这里只处理一张图,但是维度必须和原来保持一致,即下面这一行
    x = Variable(torch.unsqueeze(img, dim=0).float(), requires_grad=False)
    x = x.cuda()
    y = net(x)
    y = torch.squeeze(y)
    #由于numpy的操作是在cpu上进行的,本博客的网络都是用GPU处理的,所以需要将tensor从GPU转至CPU再变成numpy的形式进行保存
    y = y.cpu().detach().numpy()
    np.save(save_path, y)
    ##如果是保存图片,
    # unloader = transforms.ToPILImage()
    # image = y.cpu().clone()
    # image = image.squeeze(0)
    # image = unloader(image)
    # image.save(save_path)

5、读取图片

  这一步就没那么多讲究了,就按照你图片的存放方式去读取就好了。主要就是别忘了保存路径。

data_dir = '/faceSD/S/'
fea_dir = '/faceSDfea/S/'
data_list = os.listdir(data_dir)

for i in range(len(data_list)):
    group_dir = data_dir + data_list[i] + '/'
    group_list = os.listdir(group_dir)
    save_dir = fea_dir + data_list[i] + '/'
    if os.path.exists(save_dir) == False:
        os.makedirs(save_dir)
    for j in range(2):
        img_path = group_dir + group_list[j]
        save_path = save_dir + group_list[j][0:-3] + 'npy'
        extractors(img_path,save_path,cnn)

三、完整代码

import torch
import torch.nn as nn
from torch.autograd import Variable
from torchvision import models, transforms
from PIL import Image
import numpy as np
import os, glob
import math
os.environ["CUDA_VISIBLE_DEVICES"] = "2"

class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
                               padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * 4)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out
class CNN(nn.Module):

    def __init__(self, block, layers, num_classes=10000):
        self.inplanes = 64
        super(CNN, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        self.avgpool = nn.AdaptiveAvgPool2d(output_size=(1,1))
        self.fclass1 = nn.Linear(2048, 199)
        # self.fclass2 = nn.Linear(199, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()

    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                            kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
        x = x.view(x.size(0), -1)

        x = self.fclass1(x)
        # x = self.fclass2(x)

        return x
#载入模型参数
cnn = CNN(Bottleneck, [3, 4, 6, 3])
pretrained_dict = torch.load('/model/recognition/res50_net_params_253.pkl')
model1_dict = cnn.state_dict()
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model1_dict}
model1_dict.update(pretrained_dict)
cnn.load_state_dict(model1_dict)
cnn = cnn.cuda()
##################################################################################################################
def extractors(img_path, sava_path, net):
    transform = transforms.Compose([
        # transforms.Resize(256),
        # transforms.CenterCrop(224),
        transforms.ToTensor()]
    )
    img = Image.open(img_path)
    img = transform(img)
    # print(img.shape)
    x = Variable(torch.unsqueeze(img, dim=0).float(), requires_grad=False)
    # print(x.shape)
    x = x.cuda()

    y = net(x)
    y = torch.squeeze(y)
    y = y.cpu().detach().numpy()
    np.save(save_path, y)

##################################################################################
data_dir = '/faceSD/S/'
fea_dir = '/faceSDfea/S/'
data_list = os.listdir(data_dir)

for i in range(len(data_list)):
    group_dir = data_dir + data_list[i] + '/'
    group_list = os.listdir(group_dir)
    save_dir = fea_dir + data_list[i] + '/'
    if os.path.exists(save_dir) == False:
        os.makedirs(save_dir)
    for j in range(2):
        img_path = group_dir + group_list[j]
        save_path = save_dir + group_list[j][0:-3] + 'npy'
        extractors(img_path,save_path,cnn)

你可能感兴趣的:(Pytorch,深度学习攻略)