ES系列16:管道聚合你都不会?那你如何做聚合分析

 点击上方“方才编程”,即可关注我!

本文目标

学习管道聚合,是为了完成更复杂的聚合分析,通过本文,你将对管道聚合的各种类型的功用和使用场景有一个全面的掌握。当遇到聚合需求时,可以快速反应,选用合适的聚合类型。

ps:本文基于ES 7.7.1文末附《管道聚合详解》xmind 获取方式

ES系列16:管道聚合你都不会?那你如何做聚合分析_第1张图片

管道聚合详解

前两天,我们已经学习ES的桶聚合和指标聚合,这是学习 Pipeline Agg 的基础,如果对这两个聚合还没有整体概念的伙伴,可点击:ES系列14:你知道25种(桶聚合)Bucket Aggs 类型各自的使用场景么、ES系列15:ES的指标聚合有哪些呢?在这里,我都给你总结好了

在掌握了Bucket Agg 和 Metric Agg 后,对于很多聚合分析场景,就已经可以得心应手了,如果有更为复杂的,比如说二次聚合,可能就需要用到管道聚合 Pipeline Agg 了。

什么叫 Pipeline Agg 呢?就是管道聚合:对其他聚合结果进行二次聚合。注意,管道聚合不能具有子聚合,但是根据其类型,它可以引用buckets_path 允许管道聚合链接的另一个管道。例如,您可以将两个导数链接在一起以计算第二个导数(即导数的导数)。

在系统学习管道聚合之前,我们需要先掌握管道聚合的必填参数 buckets_path 的语法。

01 buckets_path 的语法

1.1 与操作的聚合对象同级,就是 Agg_Name

POST /_search
{
    "aggs": {
        "my_date_histo":{
            "date_histogram":{
                "field":"timestamp",
                "calendar_interval":"day"
            },
            "aggs":{
                "the_sum":{
                    "sum":{ "field": "lemmings" }
                },
                "the_movavg":{
                    "moving_avg":{ "buckets_path": "the_sum" }
                }
            }
        }
    }
}

1.2 与操作的聚合对象不同级,就是 Agg_Name的相对路径,多个 Agg_Name间使用“>”连接

POST /_search
{
    "aggs" : {
        "sales_per_month" : {
            "date_histogram" : {
                "field" : "date",
                "calendar_interval" : "month"
            },
            "aggs": {
                "sales": {
                    "sum": {
                        "field": "price"
                    }
                }
            }
        },
        "max_monthly_sales": {
            "max_bucket": {
                "buckets_path": "sales_per_month>sales"
            }
        }
    }
}

1.3 操作对象是多值桶某个key 的聚合,就是 Agg_Name1['keyName']>Agg_Name2

POST /_search
{
    "aggs" : {
        "sales_per_month" : {
            "date_histogram" : {
                "field" : "date",
                "calendar_interval" : "month"
            },
            "aggs": {
                "sale_type": {
                    "terms": {
                        "field": "type"
                    },
                    "aggs": {
                        "sales": {
                            "sum": {
                                "field": "price"
                            }
                        }
                    }
                },
                "hat_vs_bag_ratio": {
                    "bucket_script": {
                        "buckets_path": {
                            "hats": "sale_type['hat']>sales",
                            "bags": "sale_type['bag']>sales"
                        },
                        "script": "params.hats / params.bags"
                    }
                }
            }
        }
    }
}

1.4 特殊路径

POST /_search
{
    "aggs": {
        "my_date_histo": {
            "date_histogram": {
                "field":"timestamp",
                "calendar_interval":"day"
            },
            "aggs": {
                "the_movavg": {
                    "moving_avg": { "buckets_path": "_count" }
                }
            }
        }
    }
}

或者
POST /sales/_search
{
  "size": 0,
  "aggs": {
    "histo": {
      "date_histogram": {
        "field": "date",
        "calendar_interval": "day"
      },
      "aggs": {
        "categories": {
          "terms": {
            "field": "category"
          }
        },
        "min_bucket_selector": {
          "bucket_selector": {
            "buckets_path": {
              "count": "categories._bucket_count"
            },
            "script": {
              "source": "params.count != 0"
            }
          }
        }
      }
    }
  }
}

了解了buckets_path 的语法,接下来我们就详细学习管道聚合,在学习之前,我们要知道管道聚合根据输出结果的位置分为Parent【结果内嵌到现有的聚合分析结果中】 和 Sibling【结果和现有分析结果同级】 两类

02 Parent 分类

2.1 Bucket Script 桶脚本聚合

ES系列16:管道聚合你都不会?那你如何做聚合分析_第2张图片

场景示例:计算出每月T恤销售额与总销售额的比例百分比

POST /sales/_search
{
    "size": 0,
    "aggs" : {
        "sales_per_month" : {
            "date_histogram" : {
                "field" : "date",
                "calendar_interval" : "month"
            },
            "aggs": {
                "total_sales": {
                    "sum": {
                        "field": "price"
                    }
                },
                "t-shirts": {
                  "filter": {
                    "term": {
                      "type": "t-shirt"
                    }
                  },
                  "aggs": {
                    "sales": {
                      "sum": {
                        "field": "price"
                      }
                    }
                  }
                },
                "t-shirt-percentage": {
                    "bucket_script": {
                        "buckets_path": {
                          "tShirtSales": "t-shirts>sales",
                          "totalSales": "total_sales"
                        },
                        "script": "params.tShirtSales / params.totalSales * 100"
                    }
                }
            }
        }
    }
}

结果:

{
   "took": 11,
   "timed_out": false,
   "_shards": ...,
   "hits": ...,
   "aggregations": {
      "sales_per_month": {
         "buckets": [
            {
               "key_as_string": "2015/01/01 00:00:00",
               "key": 1420070400000,
               "doc_count": 3,
               "total_sales": {
                   "value": 550.0
               },
               "t-shirts": {
                   "doc_count": 1,
                   "sales": {
                       "value": 200.0
                   }
               },
               "t-shirt-percentage": {
                   "value": 36.36363636363637
               }
            },
            {
               "key_as_string": "2015/02/01 00:00:00",
               "key": 1422748800000,
               "doc_count": 2,
               "total_sales": {
                   "value": 60.0
               },
               "t-shirts": {
                   "doc_count": 1,
                   "sales": {
                       "value": 10.0
                   }
               },
               "t-shirt-percentage": {
                   "value": 16.666666666666664
               }
            },
            {
               "key_as_string": "2015/03/01 00:00:00",
               "key": 1425168000000,
               "doc_count": 2,
               "total_sales": {
                   "value": 375.0
               },
               "t-shirts": {
                   "doc_count": 1,
                   "sales": {
                       "value": 175.0
                   }
               },
               "t-shirt-percentage": {
                   "value": 46.666666666666664
               }
            }
         ]
      }
   }
}

2.2 Bucket Selector 桶选择器聚合

ES系列16:管道聚合你都不会?那你如何做聚合分析_第3张图片

场景示例:获取当月总销售额超过200的存储分区桶

POST /sales/_search
{
    "size": 0,
    "aggs" : {
        "sales_per_month" : {
            "date_histogram" : {
                "field" : "date",
                "calendar_interval" : "month"
            },
            "aggs": {
                "total_sales": {
                    "sum": {
                        "field": "price"
                    }
                },
                "sales_bucket_filter": {
                    "bucket_selector": {
                        "buckets_path": {
                          "totalSales": "total_sales"
                        },
                        "script": "params.totalSales > 200"
                    }
                }
            }
        }
    }
}

结果:

{
   "took": 11,
   "timed_out": false,
   "_shards": ...,
   "hits": ...,
   "aggregations": {
      "sales_per_month": {
         "buckets": [
            {
               "key_as_string": "2015/01/01 00:00:00",
               "key": 1420070400000,
               "doc_count": 3,
               "total_sales": {
                   "value": 550.0
               }
            },
            {
               "key_as_string": "2015/03/01 00:00:00",
               "key": 1425168000000,
               "doc_count": 2,
               "total_sales": {
                   "value": 375.0
               }
            }
         ]
      }
   }
}

2.3 Bucket Sort 桶排序聚合

ES系列16:管道聚合你都不会?那你如何做聚合分析_第4张图片

场景示例:按降序返回总销售额最高的3个月相对应的存储桶

POST /sales/_search
{
    "size": 0,
    "aggs" : {
        "sales_per_month" : {
            "date_histogram" : {
                "field" : "date",
                "calendar_interval" : "month"
            },
            "aggs": {
                "total_sales": {
                    "sum": {
                        "field": "price"
                    }
                },
                "sales_bucket_sort": {
                    "bucket_sort": {
                        "sort": [
                          {"total_sales": {"order": "desc"}}
                        ],
                        "size": 3,				
		        "from": 0
                    }
                }
            }
        }
    }
}

结果:

   "aggregations": {
      "sales_per_month": {
         "buckets": [
            {
               "key_as_string": "2015/01/01 00:00:00",
               "key": 1420070400000,
               "doc_count": 3,
               "total_sales": {
                   "value": 550.0
               }
            },
            {
               "key_as_string": "2015/03/01 00:00:00",
               "key": 1425168000000,
               "doc_count": 2,
               "total_sales": {
                   "value": 375.0
               },
            },
            {
               "key_as_string": "2015/02/01 00:00:00",
               "key": 1422748800000,
               "doc_count": 2,
               "total_sales": {
                   "value": 60.0
               },
            }
         ]
      }
   }

2.4  Cumulative Cardinality  累积基数聚合

ES系列16:管道聚合你都不会?那你如何做聚合分析_第5张图片

场景示例1:获取网站每天的新访问者总的累计数量【后一天会累加前一天的,就是以第一天为基准】

GET /user_hits/_search
{
    "size": 0,
    "aggs" : {
        "users_per_day" : {
            "date_histogram" : {
                "field" : "timestamp",
                "calendar_interval" : "day"
            },
            "aggs": {
                "distinct_users": {
                    "cardinality": {
                        "field": "user_id"
                    }
                },
                "total_new_users": {
                    "cumulative_cardinality": {
                        "buckets_path": "distinct_users"
                    }
                }
            }
        }
    }
}

结果:

   "aggregations": {
      "users_per_day": {
         "buckets": [
            {
               "key_as_string": "2019-01-01T00:00:00.000Z",
               "key": 1546300800000,
               "doc_count": 2,
               "distinct_users": {
                  "value": 2
               },
               "total_new_users": {
                  "value": 2
               }
            },
            {
               "key_as_string": "2019-01-02T00:00:00.000Z",
               "key": 1546387200000,
               "doc_count": 2,
               "distinct_users": {
                  "value": 2
               },
               "total_new_users": {
                  "value": 3
               }
            },
            {
               "key_as_string": "2019-01-03T00:00:00.000Z",
               "key": 1546473600000,
               "doc_count": 3,
               "distinct_users": {
                  "value": 3
               },
               "total_new_users": {
                  "value": 4
               }
            }
         ]
      }
   }
}

结果分析:
请注意,第二天2019-01-02拥有两个不同的用户,
但total_new_users累积管道agg生成的指标仅增加到三个。
这意味着当天的两个用户中只有一个是新用户,
而在前一天已经看到了另一个用户。
第三天再次发生这种情况,三个用户中只有一个是全新的。

添加聚合:derivative 增量累积基数

场景示例2:获取网站每天增加了多少新用户【数据以前一天为基准】

GET /user_hits/_search
{
    "size": 0,
    "aggs" : {
        "users_per_day" : {
            "date_histogram" : {
                "field" : "timestamp",
                "calendar_interval" : "day"
            },
            "aggs": {
                "distinct_users": {
                    "cardinality": {
                        "field": "user_id"
                    }
                },
                "total_new_users": {
                    "cumulative_cardinality": {
                        "buckets_path": "distinct_users"
                    }
                },
                "incremental_new_users": {
                    "derivative": {
                        "buckets_path": "total_new_users"
                    }
                }
            }
        }
    }
}

结果:

   "aggregations": {
      "users_per_day": {
         "buckets": [
            {
               "key_as_string": "2019-01-01T00:00:00.000Z",
               "key": 1546300800000,
               "doc_count": 2,
               "distinct_users": {
                  "value": 2
               },
               "total_new_users": {
                  "value": 2
               }
            },
            {
               "key_as_string": "2019-01-02T00:00:00.000Z",
               "key": 1546387200000,
               "doc_count": 2,
               "distinct_users": {
                  "value": 2
               },
               "total_new_users": {
                  "value": 3
               },
               "incremental_new_users": {
                  "value": 1.0
               }
            },
            {
               "key_as_string": "2019-01-03T00:00:00.000Z",
               "key": 1546473600000,
               "doc_count": 3,
               "distinct_users": {
                  "value": 3
               },
               "total_new_users": {
                  "value": 4
               },
               "incremental_new_users": {
                  "value": 1.0
               }
            }
         ]
      }
   }
}

2.5 Cumulative Sum 累积总和聚合

ES系列16:管道聚合你都不会?那你如何做聚合分析_第6张图片

场景示例:计算到当月为止,每月累计销售金额的总和

POST /sales/_search
{
    "size": 0,
    "aggs" : {
        "sales_per_month" : {
            "date_histogram" : {
                "field" : "date",
                "calendar_interval" : "month"
            },
            "aggs": {
                "sales": {
                    "sum": {
                        "field": "price"
                    }
                },
                "cumulative_sales": {
                    "cumulative_sum": {
                        "buckets_path": "sales"
                    }
                }
            }
        }
    }
}

结果:

   "aggregations": {
      "sales_per_month": {
         "buckets": [
            {
               "key_as_string": "2015/01/01 00:00:00",
               "key": 1420070400000,
               "doc_count": 3,
               "sales": {
                  "value": 550.0
               },
               "cumulative_sales": {
                  "value": 550.0
               }
            },
            {
               "key_as_string": "2015/02/01 00:00:00",
               "key": 1422748800000,
               "doc_count": 2,
               "sales": {
                  "value": 60.0
               },
               "cumulative_sales": {
                  "value": 610.0
               }
            },
            {
               "key_as_string": "2015/03/01 00:00:00",
               "key": 1425168000000,
               "doc_count": 2,
               "sales": {
                  "value": 375.0
               },
               "cumulative_sales": {
                  "value": 985.0
               }
            }
         ]
      }
   }
}

2.6 剩下4个Parent类型的管道聚合

先了解下,如有需要再深入学习

ES系列16:管道聚合你都不会?那你如何做聚合分析_第7张图片

03 Sibling 分类

3.1 六种统计类管道聚合

ES系列16:管道聚合你都不会?那你如何做聚合分析_第8张图片

我觉得对于这6种管道聚合,应该不用一一介绍了,就和指标聚合类似,Avg、Max、Min、Sum,一看就知道是什么意思,简单看一个示例即可。

场景示例:计算每月销售额总量的平均值

POST /_search
{
  "size": 0,
  "aggs": {
    "sales_per_month": {
      "date_histogram": {
        "field": "date",
        "calendar_interval": "month"
      },
      "aggs": {
        "sales": {
          "sum": {
            "field": "price"
          }
        }
      }
    },
    "avg_monthly_sales": {
      "avg_bucket": {
        "buckets_path": "sales_per_month>sales"
      }
    }
  }
}

结果:

{
   "took": 11,
   "timed_out": false,
   "_shards": ...,
   "hits": ...,
   "aggregations": {
      "sales_per_month": {
         "buckets": [
            {
               "key_as_string": "2015/01/01 00:00:00",
               "key": 1420070400000,
               "doc_count": 3,
               "sales": {
                  "value": 550.0
               }
            },
            {
               "key_as_string": "2015/02/01 00:00:00",
               "key": 1422748800000,
               "doc_count": 2,
               "sales": {
                  "value": 60.0
               }
            },
            {
               "key_as_string": "2015/03/01 00:00:00",
               "key": 1425168000000,
               "doc_count": 2,
               "sales": {
                  "value": 375.0
               }
            }
         ]
      },
      "avg_monthly_sales": {
          "value": 328.33333333333333
      }
   }
}

对于 Stats Bucket 统计数据桶聚合,我们看下响应结果,知道统计了哪些指标即可:

   "aggregations": {
      "sales_per_month": {
         "buckets": [
            {
               "key_as_string": "2015/01/01 00:00:00",
               "key": 1420070400000,
               "doc_count": 3,
               "sales": {
                  "value": 550.0
               }
            },
            {
               "key_as_string": "2015/02/01 00:00:00",
               "key": 1422748800000,
               "doc_count": 2,
               "sales": {
                  "value": 60.0
               }
            },
            {
               "key_as_string": "2015/03/01 00:00:00",
               "key": 1425168000000,
               "doc_count": 2,
               "sales": {
                  "value": 375.0
               }
            }
         ]
      },
      "stats_monthly_sales": {
         "count": 3,
         "min": 60.0,
         "max": 550.0,
         "avg": 328.3333333333333,
         "sum": 985.0
      }
   }
}

Extended Stats Bucket 扩展统计数据桶聚合,也直接看统计结果:

示例结果:
      "stats_monthly_sales": {
         "count": 3,
         "min": 60.0,
         "max": 550.0,
         "avg": 328.3333333333333,
         "sum": 985.0,
         "sum_of_squares": 446725.0,
         "variance": 41105.55555555556,
         "std_deviation": 202.74505063146563,
         "std_deviation_bounds": {
           "upper": 733.8234345962646,
           "lower": -77.15676792959795
         }
      }
   }

2.2 Percentiles Bucket 百分数桶聚合

ES系列16:管道聚合你都不会?那你如何做聚合分析_第9张图片

场景示例计算每月总销售额存储桶对应的百分比位置的金额

POST /sales/_search
{
    "size": 0,
    "aggs" : {
        "sales_per_month" : {
            "date_histogram" : {
                "field" : "date",
                "calendar_interval" : "month"
            },
            "aggs": {
                "sales": {
                    "sum": {
                        "field": "price"
                    }
                }
            }
        },
        "percentiles_monthly_sales": {
            "percentiles_bucket": {
                "buckets_path": "sales_per_month>sales",
                "percents": [ 25.0, 50.0, 75.0 ]
            }
        }
    }
}

结果:

   "aggregations": {
      "sales_per_month": {
         "buckets": [
            {
               "key_as_string": "2015/01/01 00:00:00",
               "key": 1420070400000,
               "doc_count": 3,
               "sales": {
                  "value": 550.0
               }
            },
            {
               "key_as_string": "2015/02/01 00:00:00",
               "key": 1422748800000,
               "doc_count": 2,
               "sales": {
                  "value": 60.0
               }
            },
            {
               "key_as_string": "2015/03/01 00:00:00",
               "key": 1425168000000,
               "doc_count": 2,
               "sales": {
                  "value": 375.0
               }
            }
         ]
      },
      "percentiles_monthly_sales": {
        "values" : {
            "25.0": 375.0,
            "50.0": 375.0,
            "75.0": 550.0
         }
      }
   }
}

写在最后

对于需要使用聚合分析的小伙伴,建议一定要对ES的3种聚合有一个整体的概念,知道ES的聚合能做哪些数据操作,从而面对各种聚合分析的需求时候,才能快速反应,知道该用什么样的操作,而不是绞尽脑汁,使用自己仅知道的Max、Sum等简单聚合去组合DSL。

下期预告:聚合的作用范围与精度问题关注公众号:方才编程,系统学习ES

待续


       

●ES系列13:彻底掌握相关度

●ES系列14:25种桶聚合详解

●ES系列15:ES的指标聚合

点击加入 ES学习社群,即可免费领取《管道聚合详解》xmind!【我们最好的关系就是互相成就大家的点赞、在看、分享就是我创作的最大动力!

你可能感兴趣的:(ES系列16:管道聚合你都不会?那你如何做聚合分析)