Pytorch学习笔记【10】:实战!CNN手写数字识别

注意看代码注释!!!解析都在注释里,不要怕麻烦,自己复制代码,运行一遍,然后结合 运行结果和代码注释就能够看懂代码

 

1. 代码:

import os

# 引入一些包
import torch
import torch.nn as nn
import torch.utils.data as Data
import torchvision
import matplotlib.pyplot as plt


# 定义一些参数
EPOCH = 1               # 训练数据的次数,我们这里假定训练一次
BATCH_SIZE = 50         # 每次训练的数据量,这个会产生每一次训练分多少次进行,或者多少批进行
LR = 0.001              # 学习率
DOWNLOAD_MNIST = False


# 下载并且加载数据集
if not(os.path.exists('./mnist/')) or not os.listdir('./mnist/'):
    # not mnist dir or mnist is empyt dir
    DOWNLOAD_MNIST = True

train_data = torchvision.datasets.MNIST(
    root='./mnist/',
    train=True,                                     # 表示训练数据
    transform=torchvision.transforms.ToTensor(),    # 将数据转换成tensor
                                                    # torch.FloatTensor of shape (C x H x W) and normalize in the range [0.0, 1.0]
    download=DOWNLOAD_MNIST,
)

# 画出一个例子,更直观
print(train_data.train_data.size())                 # (60000, 28, 28)
print(train_data.train_labels.size())               # (60000)
plt.imshow(train_data.train_data[0].numpy(), cmap='gray')
plt.title('%i' % train_data.train_labels[0])
plt.show()

# 加载我们下载好的数据, 每一批的数据形状是 (50, 1, 28, 28)
train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True) # 加载数据

# 选择2000条数据来训练
test_data = torchvision.datasets.MNIST(root='./mnist/', train=False)
test_x = torch.unsqueeze(test_data.test_data, dim=1).type(torch.FloatTensor)[:2000]/255.   # shape from (2000, 28, 28) to (2000, 1, 28, 28), value in range(0,1)
test_y = test_data.test_labels[:2000]

# 构建自己的CNN网络
class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.conv1 = nn.Sequential(         # 输入图形的形式 (1, 28, 28) 定义第一个卷积层
            nn.Conv2d(
                in_channels=1,              # 输入的通道数,也就是高度
                out_channels=16,            # n_filters,16个过滤器  之后图形成了(16,28,28)
                kernel_size=5,              # 卷积核是5*5的
                stride=1,                   # filter 过滤器的步长
                padding=2,                  # if want same width and length of this image after Conv2d, padding=(kernel_size-1)/2 if stride=1
            ),                              # output shape (16, 28, 28)
            nn.ReLU(),                      # activation 激活函数
            nn.MaxPool2d(kernel_size=2),    # 选择 2x2 area,进行池化层操作, 输出形状 (16, 14, 14)
        )
        self.conv2 = nn.Sequential(         # 输入形状 (16, 14, 14)
            nn.Conv2d(16, 32, 5, 1, 2),     # 输出形状 (32, 14, 14)
            nn.ReLU(),                      # 激活函数
            nn.MaxPool2d(2),                # 池化层之后的形状 (32, 7, 7)
        )
        self.out = nn.Linear(32 * 7 * 7, 10)   # 全连接层, 输出10个数字,因为分类嘛,总共有10个类。

    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = x.view(x.size(0), -1)           # 将数据由(32,7,7)这样的空间数据拉成一个列向量,也就是32*7*7
        output = self.out(x)
        return output, x    # return x for visualization


cnn = CNN()
# 打印出来看一看
print(cnn)  # net architecture

optimizer = torch.optim.Adam(cnn.parameters(), lr=LR)   # 在优化器中传入参数
loss_func = nn.CrossEntropyLoss()                       # 专门用来做分类的损失函数

# 开始训练
for epoch in range(EPOCH):
    for step, (b_x, b_y) in enumerate(train_loader):   # 数据总量/每批训练量=最终step的值
        print('b_x: ',b_x)
        output = cnn(b_x)[0]            # cnn output
        loss = loss_func(output, b_y)   # cross entropy loss
        optimizer.zero_grad()           # clear gradients for this training step
        loss.backward()                 # 神经网络反向传播
        optimizer.step()                # 更新梯度,或者更新参数

        if step % 50 == 0:
            test_output, last_layer = cnn(test_x)
            pred_y = torch.max(test_output, 1)[1].data.numpy()
            accuracy = float((pred_y == test_y.data.numpy()).astype(int).sum()) / float(test_y.size(0)) # 计算正确率
            print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy(), '| test accuracy: %.2f' % accuracy)
            

# 使用10个测试数据进行测试
test_output, _ = cnn(test_x[:10])
pred_y = torch.max(test_output, 1)[1].data.numpy()
print('pred_y_1: ',test_output)
print('pred_y_2: ',torch.max(test_output,1))
print('pred_y_3: ',torch.max(test_output,1)[1])
print(pred_y, 'prediction number')
print(test_y[:10].numpy(), 'real number')

2. 运行结果:

你可能感兴趣的:(#,Pytorch)