聊聊分布式应用的分布式事务2PC/3PC
聊聊分布式应用的分布式事务TCC
聊聊分布式应用的分布式事务之最大努力通知型事务
聊聊分布式应用的分布式事务之消息最终一致性事务
几个关键词:ACID,XA,2PC,3PC,CAP,BASE,TCC及消息队列实现最终一致性。
数据库事务的特性:原子性(Atomicity )、一致性( Consistency )、隔离性或独立性( Isolation)和持久性(Durabilily),简称就是ACID。具体知识参考博文:一文读懂Spring事务和MySQL事务与锁
① CAP
C(Consistency)强一致性、A(Availability)高可用性和P(Partition tolerance)分区容错性。
CA:单点集群,满足一致性,可用性的系统,通常在可扩展性上不太强大。
CP:满足一致性、分区容错性的系统,通常性能不是特别高。
AP:满足可用性、分区容错性的系统,通常可能对一致性要求低一些。
C(Consistency)强一致性
在分布式环境下,一致性是指数据在多个副本之间能否保持一致的特性。在一致性的需求下,当一个系统在数据一致的状态下执行更新操作后,应该保证系统的数据仍然处于一致的状态。
对于一个将数据副本分布在不同分布式节点上的系统来说,如果对第一个节点的数据进 行了更新操作并且更新成功后,却没有使得第二个节点上的数据得到相应的更新。于是在对第二个节点的数据进行读取操作时,获取的依然是老数据(或称为脏数 据),这就是典型的分布式数据不一致的情况。在分布式系统中,如果能够做到针对一个数据项的更新操作执行成功后,所有的用户都可以读取到其最新的值,那么 这样的系统就被认为具有强一致性。
A(Availability)高可用性
可用性是指系统提供的服务必须一直处于可用的状态,对于用户的每一个操作请求总是能够在有限的时间内返回结果。这里的重点是"有限时间内"和"返回结果"。
"有限时间内"是指,对于用户的一个操作请求,系统必须能够在指定的时间内返回对 应的处理结果,如果超过了这个时间范围,那么系统就被认为是不可用的。另外,"有限的时间内"是指系统设计之初就设计好的运行指标,通常不同系统之间有很 大的不同,无论如何,对于用户请求,系统必须存在一个合理的响应时间,否则用户便会对系统感到失望。
"返回结果"是可用性的另一个非常重要的指标,它要求系统在完成对用户请求的处理后,返回一个正常的响应结果。正常的响应结果通常能够明确地反映出队请求的处理结果,即成功或失败,而不是一个让用户感到困惑的返回结果。
分区容错性
分区容错性约束了一个分布式系统具有如下特性:分布式系统在遇到任何网络分区故障的时候,仍然需要能够保证对外提供满足一致性和可用性的服务,除非是整个网络环境都发生了故障。
网络分区是指在分布式系统中,不同的节点分布在不同的子网络(机房或异地网络) 中,由于一些特殊的原因导致这些子网络出现网络不连通的状况,但各个子网络的内部网络是正常的,从而导致整个系统的网络环境被切分成了若干个孤立的区域。 需要注意的是,组成一个分布式系统的每个节点的加入与退出都可以看作是一个特殊的网络分区。
既然一个分布式系统无法同时满足一致性、可用性、分区容错性三个特点,所以我们就需要抛弃一样:
需要明确的一点是,对于一个分布式系统而言,分区容错性是一个最基本的要求。因为 既然是一个分布式系统,那么分布式系统中的组件必然需要被部署到不同的节点,否则也就无所谓分布式系统了,因此必然出现子网络。而对于分布式系统而言,网 络问题又是一个必定会出现的异常情况,因此分区容错性也就成为了一个分布式系统必然需要面对和解决的问题。因此系统架构师往往需要把精力花在如何根据业务 特点在C(一致性)和A(可用性)之间寻求平衡。
② 强一致性、弱一致性和最终一致性
① 强一致性
这种一致性级别是最符合用户直觉的,它要求系统写入什么,读出来的也会是什么,用户体验好,但实现起来往往对系统的性能影响大
② 弱一致性
这种一致性级别约束了系统在写入成功后,不承诺立即可以读到写入的值,也不久承诺多久之后数据能够达到一致,但会尽可能地保证到某个时间级别(比如秒级别)后,数据能够达到一致状态
③ 最终一致性
最终一致性是弱一致性的一个特例,系统会保证在一定时间内,能够达到一个数据一致的状态。这里之所以将最终一致性单独提出来,是因为它是弱一致性中非常推崇的一种一致性模型,也是业界在大型分布式系统的数据一致性上比较推崇的模型
③ BASE理论
BASE是Basically Available(基本可用)、Soft state(软状态)和Eventually consistent(最终一致性)三个短语的缩写。BASE理论是对CAP中一致性和可用性权衡的结果,其来源于对大规模互联网系统分布式实践的总结, 是基于CAP定理逐步演化而来的。BASE理论的核心思想是:即使无法做到强一致性,但每个应用都可以根据自身业务特点,采用适当的方式来使系统达到最终一致性。接下来看一下BASE中的三要素:
① 基本可用
基本可用是指分布式系统在出现不可预知故障的时候,允许损失部分可用性----注意,这绝不等价于系统不可用。比如:
响应时间上的损失。正常情况下,一个在线搜索引擎需要在0.5秒之内返回给用户相应的查询结果,但由于出现故障,查询结果的响应时间增加了1~2秒
系统功能上的损失:正常情况下,在一个电子商务网站上进行购物的时候,消费者几乎能够顺利完成每一笔订单,但是在一些节日大促购物高峰的时候,由于消费者的购物行为激增,为了保护购物系统的稳定性,部分消费者可能会被引导到一个降级页面
软状态
软状态指允许系统中的数据存在中间状态,并认为该中间状态的存在不会影响系统的整体可用性,即允许系统在不同节点的数据副本之间进行数据同步的过程存在延时
最终一致性强调的是所有的数据副本,在经过一段时间的同步之后,最终都能够达到一个一致的状态。因此,最终一致性的本质是需要系统保证最终数据能够达到一致,而不需要实时保证系统数据的强一致性。
总的来说,BASE理论面向的是大型高可用可扩展的分布式系统,和传统的事务ACID特性是相反的,它完全不同于ACID的强一致性模型,而是通过牺牲强一致性来获得可用性,并允许数据在一段时间内是不一致的,但最终达到一致状态。
但同时,在实际的分布式场景中,不同业务单元和组件对数据一致性的要求是不同的,因此在具体的分布式系统架构设计过程中,ACID特性和BASE理论往往又会结合在一起。
④ 分布式事务
随着分布式计算的发展,事务在分布式计算领域也得到了广泛的应用。在单机数据库中,我们很容易能够实现一套满足ACID特性的事务处理系统,但在分布式数据库中,数据分散在各台不同的机器上,如何对这些数据进行分布式的事务处理具有非常大的挑战。
分布式事务是指事务的参与者、支持事务的服务器、资源服务器以及事务管理器分别位于分布式系统的不同节点上,通常一个分布式事务中会涉及对多个数据源或业务系统的操作。
可以设想一个最典型的分布式事务场景:一个跨银行的转账操作涉及调用两个异地的银 行服务,其中一个是本地银行提供的取款服务,另一个则是目标银行提供的存款服务,这两个服务本身是无状态并且相互独立的,共同构成了一个完整的分布式事务。如果从本地银行取款成功,但是因为某种原因存款服务失败了,那么就必须回滚到取款之前的状态,否则用户可能会发现自己的钱不翼而飞了。
从这个例子可以看到,一个分布式事务可以看做是多个分布式的操作序列组成的,例如 上面例子的取款服务和存款服务,通常可以把这一系列分布式的操作序列称为子事务物。因此,分布式事务也可以被定义为一种嵌套型的事务,同时也就具有了 ACID事务特性。但由于在分布式事务中,各个子事务的执行是分布式的,因此要实现一种能够保证ACID特性的分布式事务处理系统就显得格外复杂。
⑤ 分布式事务常见解决方案
1.2PC两段提交协议
2.3PC三段提交协议(弥补两端提交协议缺点)
3.TCC或者GTS(阿里)
4.消息中间件最终一致性
5.传统项目采用JTA(Java操作分布式事物XA接口)+Atomikos+Druid
6.使用LCN解决分布式事物,理念“LCN并不生产事务,LCN只是本地事务的搬运工”。
- | 2PC | 3PC | 补偿 | 可靠事件 | TCC |
---|---|---|---|---|---|
一致性 | 强一致性 | 强一致性 | 最终一致性 | 最终一致性 | 最终一致性 |
事务 | 全局 | 全局 | 全局 | 全局 | 全局 |
吞吐量 | 弱 | 弱 | 中 | 高 | 中 |
实现复杂度 | 易 | 易 | 中 | 难 | 难 |
实时性 | 高 | 高 | 低 | 低 | 低 |
在金融/银行领域,通常要保证强一致性的,故而实现"最终一致性"的分布式事务解决方案比如TCC、消息中间件保证最终一致性是不采取的,一般采取2PC/3PC或变种方案。
⑥ XA规范
X/Open 组织(即现在的 Open Group )定义了分布式事务处理模型。 X/Open DTP 模型( 1994 )包括应用程序( AP )、事务管理器( TM )、资源管理器( RM )、通信资源管理器( CRM )四部分。
一般常见的事务管理器( TM )是交易中间件,常见的资源管理器( RM )是数据库,常见的通信资源管理器( CRM )是消息中间件。 通常把一个数据库内部的事务处理,如对多个表的操作,作为本地事务看待。数据库的事务处理对象是本地事务,而分布式事务处理的对象是全局事务。
所谓全局事务,是指分布式事务处理环境中,多个数据库可能需要共同完成一个工作,这个工作即是一个全局事务,例如,一个事务中可能更新几个不同的数据库。对数据库的操作发生在系统的各处但必须全部被提交或回滚。此时一个数据库对自己内部所做操作的提交不仅依赖本身操作是否成功,还要依赖与全局事务相关的其它数据库的操作是否成功,如果任一数据库的任一操作失败,则参与此事务的所有数据库所做的所有操作都必须回滚。
一般情况下,某一数据库无法知道其它数据库在做什么,因此,在一个 DTP 环境中,交易中间件是必需的,由它通知和协调相关数据库的提交或回滚。而一个数据库只将其自己所做的操作(可恢复)影射到全局事务中。
XA 就是 X/Open DTP 定义的交易中间件与数据库之间的接口规范(即接口函数),交易中间件用它来通知数据库事务的开始、结束以及提交、回滚等。 XA 接口函数由数据库厂商提供。
二阶提交协议和三阶提交协议就是根据这一思想衍生出来的。可以说二阶段提交其实就是实现XA分布式事务的关键(确切地说:两阶段提交主要保证了分布式事务的原子性:即所有结点要么全做要么全不做)
JTA
Java事务API(简称JTA)是一个Java企业版的应用程序接口。在Java环境中,允许完成跨越多个XA资源的分布式事务。
JTA事务
在两个或多个网络计算机资源上访问并且更新数据,这些数据可能分布在多个数据库上。
数据库的2PC(两阶段提交)又叫做 XA Transactions,强一致性、性能不高。
当事务跨越多个节点时,为了保持事务ACID,引入了协调者、参与者:
阶段1:请求阶段(commit-request phase,或称表决阶段,voting phase)
协调者节点向所有参与者节点询问是否可以执行提交操作,并开始等待各参与者节点的响应。
参与者节点执行询问发起为止的所有事务操作(但是不提交),并将Undo信息和Redo信息写入日志。
各参与者节点响应协调者节点发起的询问。如果参与者节点的事务操作实际执行成功,则它返回一个”同意”消息。如果参与者节点的事务操作实际执行失败,则它返回一个”中止”消息。 故而有时候第一阶段也被称作投票阶段,即各参与者投票是否要继续接下来的提交操作。
阶段2:提交阶段(commit phase)
在该阶段,协调者将基于第一个阶段的投票结果进行决策:提交或取消。当且仅当所有的参与者同意提交,事务协调者才通知所有的参与者提交事务。否则协调者将通知所有的参与者取消事务。参与者在接收到协调者发来的消息后将执行相应的操作并释放所有事务处理过程中使用的锁资源。
”正式提交(commit)”
的请求。如果任一参与者节点在第一阶段返回的响应消息为”中止”
,或者协调者节点在第一阶段的询问超时之前无法获取所有参与者节点的响应消息时:
”回滚操作(rollback)”
的请求。”回滚完成”
消息。不管最后结果如何,第二阶段都会结束当前事务。二阶段提交看起来确实能够提供原子性的操作,但是不幸的事,二阶段提交还是有几个缺点的:
它的执行过程中间,节点都处于阻塞状态。即节点之间在等待对方的相应消息时,它将什么也做不了。特别是,当一个节点在已经占有了某项资源的情况下,为了等待其他节点的响应消息而陷入阻塞状态时,当第三个节点尝试访问该节点占有的资源时,这个节点也将连带陷入阻塞状态。
由于协调者的重要性,一旦协调者发生故障。参与者会一直阻塞下去。尤其在第二阶段,协调者发生故障,那么所有的参与者还都处于锁定事务资源的状态中,而无法继续完成事务操作。(如果是协调者挂掉,可以重新选举一个协调者,但是无法解决因为协调者宕机导致的参与者处于阻塞状态的问题)
在二阶段提交的阶段二中,当协调者向参与者发送commit请求之后,发生了局部网络异常或者在发送commit请求过程中协调者发生了故障。这会导致只有一部分参与者接受到了commit请求。而在这部分参与者接到commit请求之后就会执行commit操作。但是其他部分未接到commit请求的机器则无法执行事务提交,于是整个分布式系统便出现了数据部一致性的现象。
协调者再发出commit消息之后宕机,而唯一接收到这条消息的参与者同时也宕机了。那么即使协调者通过选举协议产生了新的协调者,这条事务的状态也是不确定的,没人知道事务是否已经被提交。
三阶段提交协议,是2pc的改进版,与两阶段提交不同的是,三阶段提交是“非阻塞”协议。除了引入超时机制之外,3PC把2PC的准备阶段再次一分为二,这样三阶段提交就有CanCommit、PreCommit、DoCommit三个阶段。
3PC的CanCommit阶段其实和2PC的准备阶段很像。协调者向参与者发送commit请求,参与者如果可以提交就返回Yes响应,否则返回No响应。
事务询问 协调者向参与者发送CanCommit请求,询问是否可以执行事务提交操作,然后开始等待参与者的响应。
响应反馈 参与者接到CanCommit请求之后,正常情况下,如果其自身认为可以顺利执行事务,则返回Yes响应,并进入预备状态。否则反馈No。
阶段二:PreCommit阶段
协调者根据参与者的反应情况来决定是否可以执行事务的PreCommit操作。根据响应情况,有以下两种可能。
① 执行事务预提交
假如协调者从所有的参与者获得的反馈都是Yes响应,那么进入Prepared阶段:
② 中断事务
假如任何一个参与者向协调者反馈了No响应,或者在等待超时之后,协调者尚无法接收到所有参与者的反馈响应,那么就会中断事务。
阶段三:doCommit阶段
该阶段将进行真正的事务提交,会存在以下两种可能情况:
① 执行提交
② 中断事务
进入这一阶段,假设协调者处于正常工作状态,并且有任意一个参与者向协调者反馈了No响应,或者在等待超时之后,协调者尚无法接收到所有参与者反馈响应,那么就会中断事务。
3PC注意事项
需要注意的是,一旦进入阶段三,可能会存在以下两种故障。
无论出现哪种情况,最终都会导致参与者无法及时接收到来自协调者的doCommit或是abort请求,针对这样的异常情况,参与者都会在等待超时之后,继续进行事务提交。【参与者在等待协调者发送最终提交请求来临阶段,参与者超时未得到协调者的真正提交请求,会自动提交事务】
3PC优点和缺点
三阶段提交协议的优点:相较于二阶段提交协议,三阶段提交协议最大的优点就是降低了参与者的阻塞范围,并且能够在出现单点故障后继续达成一致。
三阶段提交协议的缺点:三阶段提交协议在去除阻塞的同时也引入了新问题。那就是在参与者接收到preCommit消息后,如果网络出现分区,此时协调者所在的节点和参与者无法进行正常网络通信,在这种情况下,该参与者依然会进行事务提交,这必然出现数据不一致性。
2PC与3PC区别
相对于2PC,3PC主要解决的单点故障问题,并减少阻塞。因为一旦参与者无法及时收到来自协调者的信息之后,它会默认执行commit。而不会一直持有事务资源并处于阻塞状态。
但是这种机制也会导致数据一致性问题。因为由于网络原因,协调者发送的abort响应没有及时被参与者接收到,那么参与者在等待超时之后执行了commit操作。这样就和其他接到abort命令并执行回滚的参与者之间存在数据不一致的情况。
参考博文:
分布式事务一致性协议2pc和3pc
分布式事务之2PC和3PC