PDF (English) | Statistics | Forum |
Time Limit: 3 second(s) | Memory Limit: 32 MB |
A set of integers is called prime independent if none of its member is a prime multiple of another member. An integer a is said to be a prime multiple of b if,
a = b x k (where k is a prime [1])
So, 6 is a prime multiple of 2, but 8 is not. And for example, {2, 8, 17} is prime independent but {2, 8, 16} or {3, 6} are not.
Now, given a set of distinct positive integers, calculate the largest prime independent subset.
Input starts with an integer T (≤ 20), denoting the number of test cases.
Each case starts with an integer N (1 ≤ N ≤ 40000) denoting the size of the set. Next line contains N integers separated by a single space. Each of these Nintegers are distinct and between 1 and 500000 inclusive.
For each case, print the case number and the size of the largest prime independent subset.
Sample Input |
Output for Sample Input |
3 5 2 4 8 16 32 5 2 3 4 6 9 3 1 2 3 |
Case 1: 3 Case 2: 3 Case 3: 2 |
1. An integer is said to be a prime if it's divisible by exactly two distinct integers. First few prime numbers are 2, 3, 5, 7, 11, 13, ...
2. Dataset is huge, use faster I/O methods.
TLE到死啊,o(╯□╰)o O(n*n)的建图时间复杂度伤不起。。。
限制:若a % b == 0 && a / b = k其中k是质数,则a和b不能同时存在于一个集合。
题意:给你n个数,让你求出满足上面限制的最大集合,输出元素个数。
思路:根据每个数质因子个数的奇偶性建立二分图,构好图。跑HK吧,匈牙利没敢写,甚至我HK都没敢用vector。
建图:不能二层for循环遍历建图,O(n*n)的建图复杂度承受不起。可以求出每个数a[i]的所有质因子p[],判断a[i] / p[]是否存在,然后根据奇偶性建图。这样建图时间复杂度最坏也就是O(n*10),然后加上HK,总时间复杂度
O(sqrt(n) * m + n * 10)。
注意:不能直接预处理所有数的质因子,MLE o(╯□╰)o
AC代码:
#include
#include
#include
#include
#include
#define MAXN 40000+10
#define MAXM 1000000+10
#define INF 0x3f3f3f3f
#define debug printf("1\n");
using namespace std;
struct Edge{
int to, next;
};
Edge edge[MAXM];
int head[MAXN], edgenum;
int P[500010], num[500010];//记录每个数是否是质数 记录每个数里面质因子的个数
int a[MAXN];
int id[MAXN];
int oddnum, evennum;
void getP()
{
memset(P, 0, sizeof(P));
for(int i = 2; i <= 500000; i++)
{
if(P[i]) continue;
for(int j = 2*i; j <= 500000; j+=i)
P[j] = 1;
}
P[1] = 1;
}
//vector p[500000+10];
void getPsum()
{
for(int j = 1; j <= 500000; j++)
{
int cnt = 0;
int n = j;
for(int i = 2; i * i <= n; i++)
{
if(n % i == 0)
{
while(n % i == 0)
{
cnt++;
n /= i;
}
}
}
if(n > 1)
cnt++;
num[j] = cnt;
}
}
void init(){
edgenum = 0;
memset(head, -1, sizeof(head));
}
void addEdge(int u, int v)
{
Edge E1 = {v, head[u]};
edge[edgenum] = E1;
head[u] = edgenum++;
}
int n;
int vis[500010];
int p[30], top;
void getprime(int n)
{
top = 0;
for(int i = 2; i * i <= n; i++)
{
if(n % i == 0)
{
p[top++] = i;
while(n % i == 0)
n /= i;
}
}
if(n > 1)
p[top++] = n;
}
void getMap()
{
scanf("%d", &n);
oddnum = evennum = 0;
memset(vis, 0, sizeof(vis));
for(int i = 1; i <= n; i++)
{
scanf("%d", &a[i]);
vis[a[i]] = i;//标记该元素 已经出现过
if(num[a[i]] & 1)
id[i] = ++oddnum;
else
id[i] = ++evennum;
}
init();
for(int i = 1; i <= n; i++)
{
getprime(a[i]);//处理质因子
for(int j = 0; j < top; j++)
{
int goal = a[i] / p[j];
int index = vis[goal];
if(index)//存在
{
if(num[a[i]] & 1 && num[a[index]] % 2 == 0)
addEdge(id[i], id[index]);
else if(num[a[i]] % 2 == 0 && num[a[index]] & 1)
addEdge(id[index], id[i]);
}
}
}
}
bool used[MAXN];
int dx[MAXN], dy[MAXN];
int mx[MAXN], my[MAXN];
int DFS(int u)
{
for(int i = head[u]; i != -1; i = edge[i].next)
{
int v = edge[i].to;
if(!used[v] && dy[v] == dx[u] + 1)
{
used[v] = true;
if(my[v] == -1 || DFS(my[v]))
{
my[v] = u; mx[u] = v;
return 1;
}
}
}
return 0;
}
int kcase = 1;
void HK()
{
memset(mx, -1, sizeof(mx));
memset(my, -1, sizeof(my));
int ans = 0;
while(1)
{
bool flag = false;
memset(dx, 0, sizeof(dx));
memset(dy, 0, sizeof(dy));
queue Q;
for(int i = 1; i <= oddnum; i++)
if(mx[i] == -1)
Q.push(i);
while(!Q.empty())
{
int u = Q.front();
Q.pop();
for(int i = head[u]; i != -1; i = edge[i].next)
{
int v = edge[i].to;
if(!dy[v])
{
dy[v] = dx[u] + 1;
if(my[v] == -1)
flag = true;
else
{
dx[my[v]] = dx[u] + 1;
Q.push(my[v]);
}
}
}
}
if(!flag) break;
memset(used, false, sizeof(used));
for(int i = 1; i <= oddnum; i++)
if(mx[i] == -1)
ans += DFS(i);
}
printf("Case %d: %d\n", kcase++, n - ans);
}
int main()
{
getP();
getPsum();
int t;
scanf("%d", &t);
while(t--)
{
getMap();
HK();
}
return 0;
}