- SPSS配对t检验,配对样本的相关系数和对应的显著性该怎么理解呢?
cda2024
算法
在数据分析的世界里,SPSS是一个强大的工具,它可以帮助我们更好地理解和解释数据。今天我们要聊的是一个非常实用但又容易让人困惑的话题——SPSS配对t检验中的配对样本相关系数及其显著性该如何理解?想象一下,你是一名CDA(CertifiedDataAnalyst)持证人,正在为一家公司分析员工的绩效提升情况。公司实施了一项新的培训计划,并希望了解这项培训是否有效。为了评估培训效果,你需要比较员工在
- 机器学习专栏(13):数据探索三重奏——从地理热力图到特征工程的财富密码
Sonal_Lynn
人工智能专题机器学习python人工智能深度学习算法开发语言
目录导言:当数据点连成黄金海岸线一、地理可视化:数据中的加州淘金热1.1基础地理散点图1.2高密度区域透视术二、相关性解密:数字背后的财富公式2.1皮尔逊相关系数矩阵2.2非线性关系发现术三、特征炼金术:创造新的财富密码3.1特征组合公式库3.2相关性进化史四、异常数据猎手:揪出数据中的"叛徒"4.1价格天花板检测4.2时空异常检测五、工业级探索工具箱5.1自动化数据透视5.2探索流程checkl
- 特征筛选方法总结(面试准备15)
爱学习的uu
人工智能大数据数据挖掘决策树
非模型方法一.FILTER过滤法:1.缺失值比例(80%以上缺失则删除)/方差注意:连续变量只删方差为0的,因为变量取值范围会影响方差大小。离散类的看各类取值占比,如果是三分类变量可以视作连续变量。函数:VarianceThreshold二.假设检验:卡方检验看离散变量是否独立方差分析看离散和连续变量是否独立F检验看连续变量是否独立三.互信息的关联度指标:相关系数(f_regression:是相关
- “相关分析”
不解风情的老妖怪哎
数据分析学习笔记数据分析大数据
一、相关分析的核心概念1.定义(1)衡量两个或多个变量之间的线性或单调关系的强度和方向(正/负相关)。(2)注意:相关性≠因果关系。2.相关系数的范围(1)取值范围为[-1,1]:1:完全正相关-1:完全负相关0:无线性相关3.应用场景(1)探索变量间的潜在关系(如收入与消费水平、广告投入与销售额)。(2)辅助特征选择(如剔除高度相关的变量,避免多重共线性)。二、常用相关系数及方法1.Pearso
- JAVA推荐系统-基于用户和物品协同过滤的电影推荐
泰山AI
技术交流推荐算法java算法
系统原理该系统使用java编写的基于用户的协同过滤算法(UserCF)和基于物品(此应用中指电影)的协同过滤(ItemtemCF)利用统计学的相关系数经常皮尔森(pearson)相关系数计算相关系数来实现千人千面的推荐系统。协同过滤算法协同过滤推荐算法是诞生最早,并且较为著名的推荐算法。主要的功能是预测和推荐。协同过滤(CollaborativeFiltering,简写CF)是推荐系统最重要得思想
- 打卡第二十天
Shining_Jiang
机器学习人工智能
方差筛选方差筛选是一种基于特征方差的特征选择方法。通过计算每个特征的方差,剔除方差较小的特征,因为这些特征对模型的贡献较小。皮尔逊相关系数筛选皮尔逊相关系数用于衡量特征与目标变量之间的线性相关性。通过计算每个特征与目标变量的相关系数,选择相关性较高的特征。Lasso筛选Lasso回归是一种带有L1正则化的线性回归方法,能够通过正则化系数将某些特征的权重压缩为零,从而实现特征选择。树模型重要性树模型
- python归一化互相关_python 特征工程 归一化 计算相关性矩阵
仙女山的仙女鹿
python归一化互相关
数据归一化的2种方法以及计算相关系数矩阵数据源源码在文章末尾有些数据没什么作用或者影响不大为了增加训练迭代速度就需要降维然后挑选出其中的相关性比较高得维度进行训练.导入和读取数据,简单方便快就好.对于缺失值,这里简单得用均值进行填充可以看到图中红色部分已经用均值填充好了,在看一下数据描述,所有特征的计数统计量count都已经变成11017.然后继续下面的归一化操作方法一:归一化的公式就是(每个值-
- Python训练打卡Day19
编程有点难
Python学习笔记python算法机器学习
常见的特征筛选算法1.方差筛选2.皮尔逊相关系数筛选3.lasso筛选4.树模型重要性5.shap重要性6.递归特征消除REF特征降维一般有2种策略:1.特征筛选:从n个特征中筛选出m个特征,比如方差筛选,剔除方差过小的特征;利用皮尔逊相关系数筛选;lasso筛选(lasso自带的系数可以理解为重要性)、利用树模型自带的重要性、shap重要性等筛选;特征递归方法2.特征组合:从n个特征中组合出m个
- 用Anaconda分析各空气质量指数与AQI的相关性
2301_81333798
pythonconda
实验题目:空气质量指数包括了PM2.5、PM10、S、CO、、h。不同的指数对AQI的影响不同。基于空气质量数据绘制热力图,分析空气质量指数与AQI的相关性。实验要求:(1)使用pandas库读取芜湖市2020年空气质量指数统计数据;(2)使用中文字体的显示问题,设置字体为黑体,并解决保存图像时负号“-”显示为方块的问题;(3)计算相关系数;(4)绘制特征相关性热力图。实验代码:importnum
- R语言绘图——组间差异箱线图图,小提琴图、聚类热力图、相关系数热力图
sta@ma@brain
神经科学工具箱脑科学核磁共振成像数据分析r语言
生物医学工程常用图箱线图:使用ggboxplot()函数来展示数据在多组间的差异小提琴图:使用ggviolin()函数来展示数据在多组间的比较热力图:pheatmap()展示聚类热图反映数据在多样本间的差异表达情况相关系数热力图:corrplot绘制相关系数图来展示数据间的相关性~相关性分析图:ggMarginal()绘制相关性分析图注:本文摘自于公众号:科研生信充电宝,R语言50绘图|50期R语
- 概率论的基本概念
Mr.魏(魏先生)
概率论的起源与发展概率论产生于十六世纪十六世纪中叶,卡当在赌博时研究不输的方法1654年,德·美黑——“合理分配赌注问题”1657年,惠更斯——《论机会游戏的计算》1933年,柯尔莫哥洛夫——《概率论的基本概念》数理统计的历史1763年,贝叶斯贝叶斯方法1809年,高斯和勒让德——最小二乘法皮尔逊、戈赛特、费歇——频率曲线、多元分析、估计和方差分析概率论是数理统计学的基础,数理统计学是概率论的一种
- python如何绘制一个空的脑的图(2d)
我要学脑机
#MNE的介绍和学习python开发语言
文章目录mne源码ai解析**函数功能****参数说明****返回值****实现逻辑****代码逐行解析****总结**使用的方式说明使用函数手动计算eeglab的标准电极绘制一个在脑图上的功能连接绘制皮尔逊系数的功能连接绘制总结说明:研究了绘制这个脑的轮廓图需要哪些函数,一些问题和bug,三维的通道应该使用什么投影方式,一个可用的基本绘图代码。我们可以使用eeglab或者mne的函数绘制一个脑区
- MATLAB 热力图制作指南:从原理到实战
Code_Verse
信息可视化matlab#数据可视化#热力图
在数据分析与可视化工作中,热力图(heatmap)是一种直观表现数据强度变化的方式。无论是展示产品销售、地理分布、相关系数矩阵还是生物学数据,热力图都能帮助我们发现模式与异常。本文将从基础知识出发,带你一步步在MATLAB中构建热力图,包括数据准备、绘图函数的使用、样式优化等,并在结尾提供一个完整的销售案例作为示范。一、热力图是什么?热力图通过颜色深浅或色彩差异表示数值大小,是二维数据可视化的常见
- H.264/AVC 变换量化编码核心技术拆解
码流怪侠
h.264AVC视频编解码变换编码量化编码DCTx264
变换编码视频压缩为什么需要变换:图像和视频信号在空间域中存在大量冗余。例如,平坦区域(如蓝天)或缓慢变化的区域(如草地)占据了大部分像素信息,这些区域在空间域中的像素值高度相关,绝大部分图像特征是平坦和变化缓慢区域占大部分,细节和内容突变占小部分,即图像中直流和低频占大部分,高频只占小部分,这样从空间域到频率域或变换域只会产生相关系数很小的变换系数。人眼对高频细节(如细微纹理或噪声)不敏感,但对低
- 3.4 数字特征
x峰峰
#数学概率论
本章系统讲解随机变量的数字特征理论,涵盖期望、方差、协方差与相关系数的核心计算与性质。以下从四个核心考点系统梳理知识体系:考点一:期望(数学期望)1.离散型随机变量的数学期望一维情形:E(X)=∑i=1∞xipiE(X)=\sum_{i=1}^\inftyx_ip_iE(X)=i=1∑∞xipi一维函数:E[g(X)]=∑i=1∞g(xi)piE[g(X)]=\sum_{i=1}^\inftyg(
- Python-相关系数矩阵计算-Python.corr()
阿羊是个凸头猿
python矩阵算法
背景知识相关系数矩阵衡量的是自变量之间的相关程度,当相关系数为1时表示自变量之间完全正相关,当相关系数为-1时表示自变量之间完全负相关。衡量方法Pearson皮尔逊相关系数衡量的是两个变量之间的线性关系,即线性关联度,在数学上定义为两个变量之间的协方差和标准差之积的商。r=cov(X,Y)σXσYr=\frac{\text{cov}(X,Y)}{\sigma_X\sigma_Y}r=σXσYcov
- Python打卡DAY19
chicpopoo
浙大疏锦行打卡python机器学习
常见的特征筛选算法方差筛选皮尔逊相关系数筛选lasso筛选树模型重要性shap重要性递归特征消除REF作业:对心脏病数据集完成特征筛选,对比精度importpandasaspdimportpandasaspd#用于数据处理和分析,可处理表格数据。importnumpyasnp#用于数值计算,提供了高效的数组操作。importmatplotlib.pyplotasplt#用于绘制各种类型的图表imp
- 5.08py打卡
丁值心
机器学习小白从0到1机器学习人工智能python开发语言支持向量机
@浙大疏锦行常见的特征筛选算法1.方差筛选2.皮尔逊相关系数筛选3.lasso筛选4.树模型重要性5.shap重要性6.递归特征消除REF题目:对心脏病数据集完成特征筛选,对比精度皮尔逊相关系数筛选可以显著提升模型效果0.84→0.88importpandasaspd#用于数据处理和分析,可处理表格数据。importnumpyasnp#用于数值计算,提供了高效的数组操作。importmatplot
- Biological Psychiatry:CNNI|青少年抑郁症患者功能连通性的重测信度
悦影科技
抑郁症青少年
摘要背景:功能性磁共振成像的重测可靠性对于识别精神疾病的可重复性生物标志物至关重要。最近的研究表明,可靠性如何限制了大脑行为关联的可观察效应,阻碍了这些效应的检测。大量文献探讨了健康个体的单变量和多变量可靠性,但相对较少的研究探讨了精神疾病人群的可靠性或其与年龄存在相互作用。方法:在此,我们对88名青少年有重度抑郁症(MDD)和无重度抑郁症(HV)展开了调研。我们比较了单变量度量,类内相关系数和2
- 协同过滤(Collaborative Filtering)
pljnb
推荐算法基础算法协同过滤
协同过滤(CollaborativeFiltering)算法原理一、基于记忆的协同过滤(Memory-BasedCF)1.用户-用户协同过滤(User-BasedCF)核心思想通过计算用户之间的相似度,利用相似用户的评分预测目标用户的兴趣。算法步骤相似度计算使用余弦相似度或皮尔逊相关系数:sim(u,v)=∑i∈Iuv(rui−rˉu)(rvi−rˉv)∑i∈Iuv(rui−rˉu)2∑i∈Iuv
- 计算脑网络数据的皮尔逊相关系数并绘制拓扑图 的 MATLAB 代码
pk_xz123456
算法深度学习matlabphp开发语言
以下是一个完整的MATLAB代码示例,用于计算脑网络数据的皮尔逊相关系数并绘制拓扑图。%模拟脑网络数据num_nodes=10;%节点数量time_points=100;%时间点数brain_data=randn(num_nodes,time_points);%生成随机数据作为脑电信号%计算皮尔逊相关系数矩阵corr_matrix=corr(brain_data');%去除自相关(对角元素)cor
- 相似度计算全攻略:从理论到Python实战
gorgor在码农
#Python基础python开发语言
目录一、基于向量的相似度1.余弦相似度(CosineSimilarity)2.点积(DotProduct)3.欧氏距离(EuclideanDistance)4.曼哈顿距离(ManhattanDistance)二、基于集合的相似度1.Jaccard相似系数(JaccardIndex)2.余弦相似度的集合扩展三、基于统计的相似度1.皮尔逊相关系数(PearsonCorrelation)2.斯皮尔曼秩相
- 基于知识图谱的个性化智能教学推荐系统(文档+源码)
「已注销」
python知识图谱人工智能pythonpygamepyqtdash
目录摘要Abstract目录第1章绪论1.1研究背景及意义1.2国内外研究现状1.2.1知识图谱1.2.2个性化推荐系统1.3本文研究内容及创新点1.4全文组织结构第2章相关理论与技术概述2.1知识图谱2.1.1知识图谱的介绍与发展2.1.2知识图谱的构建2.3协同过滤推荐算法2.2.1推荐算法概述2.2.2Pearson相关系数2.2.3Spearman相关系数2.4Bert模型和Albert模
- 《计量地理学》实习指南
zmg18213828575
一、EXCEL中常用的函数(部分)操作方法:打开EXCEL→输入原始数据→选择fx粘贴函数→函数分类中选择统计→从函数名中选择我们所需要的函数→确定→在数值中输入或选入计算数据范围(如A1:A10)则结果就会出来。具体的函数及其含义:AVERAGE计算参数平均值CORREL求相关系数DEVSQ求离差平方和FTESTF检验的结果GEOMEAN正数数组的几何平均数INTERCEPT一元回归线的载距(Y
- 利用R语言irr包计算ICC值(组内相关系数)
mlhylzqwxli
r语言
ICC值是一个较为陌生的概念,在统计学中应用较多,引用百度百科的介绍:组内相关系数(ICC)是衡量和评价观察者间信度(inter-observerreliability)和复测信度(test-retestreliability)的信度系数(reliabilitycoefficient)指标之一。它最先由Bartko于1966年用于测量和评价信度的大小。ICC等于个体的变异度除以总的变异度,故其值介
- 小波包阈值去噪方法
yyytucj
人工智能算法
针对小波包去噪对含强白噪声的信号处理效果不理想问题,提出了基于互相关分析优化的VMD-小波包阈值去噪方法。该方法融合了VMD和小波包去噪的优势,通过VMD把含噪信号分解成若干个模态分量,根据互相关分析提出的临界相关系数从所有模态分量中搜寻极优模态分量,之后利用小波包阈值去噪对极优模态分量进行处理。实验结果表明,该方法对含强白噪声的信号去噪效果具有优势,能够保全信号的有效分量,克服了传统VMD去噪的
- 协方差与相关系数概念解释
huangweibo的博客
数学/线性代数线性代数
参考知乎答案:如何通俗易懂地解释「协方差」与「相关系数」的概念?-GRAYLAMB的回答-知乎https://www.zhihu.com/question/20852004/answer/134902061
- python数据分析的基础知识—pandas中dataframe()使用
sodaloveer
python数据分析基础知识python数据分析系列pythonpandas数据分析
文章目录前言一、DataFrame创建1、函数创建2、直接创建3、字典创建二、DataFrame属性1、查看列的数据类型2、查看DataFrame的前几行后几行3、查看行名与列名4、查看数据值5、查看行列数三、DataFrame切片与索引1、普通索引2、层次化索引四、DataFrame操作1、转置2、描述性统计3、计算算术运算逻辑运算统计函数累计统计函数相关系数和协方差自定义运算4、新增5、修改6
- 机器学习数学基础:36.φ相关系数分析
@心都
机器学习人工智能
用φ相关系数分析性别与心理测验态度关系的教程一、学习目标学会使用φ相关系数分析两个二分变量(如性别男/女、对心理测验态度肯定/否定)之间的关系,并通过卡方检验判断结果是否具有统计学意义。二、数据准备假设我们想研究青年大学生的性别和对心理测验的态度之间的关系,收集到如下2×22×22×2列联表数据(调查了170170170人):肯定否定合计男生222222888888110110110女生18181
- 机器学习数学基础:37.偏相关分析
@心都
机器学习人工智能
偏相关分析教程一、偏相关分析是什么在很多复杂的系统中,比如地理系统,会有多个要素相互影响。偏相关分析就是在这样多要素构成的系统里,不考虑其他要素的干扰,专门去研究两个要素之间关系紧密程度的一种方法。用来衡量这种紧密程度的数值,叫做偏相关系数。举个简单例子,在研究一个地区的房价时,房价会受到很多因素影响,像地段、房屋面积、周边配套设施等。如果我们想知道单纯的房屋面积和房价之间的关系,就可以用偏相关分
- Maven
Array_06
eclipsejdkmaven
Maven
Maven是基于项目对象模型(POM), 信息来管理项目的构建,报告和文档的软件项目管理工具。
Maven 除了以程序构建能力为特色之外,还提供高级项目管理工具。由于 Maven 的缺省构建规则有较高的可重用性,所以常常用两三行 Maven 构建脚本就可以构建简单的项目。由于 Maven 的面向项目的方法,许多 Apache Jakarta 项目发文时使用 Maven,而且公司
- ibatis的queyrForList和queryForMap区别
bijian1013
javaibatis
一.说明
iBatis的返回值参数类型也有种:resultMap与resultClass,这两种类型的选择可以用两句话说明之:
1.当结果集列名和类的属性名完全相对应的时候,则可直接用resultClass直接指定查询结果类
- LeetCode[位运算] - #191 计算汉明权重
Cwind
java位运算LeetCodeAlgorithm题解
原题链接:#191 Number of 1 Bits
要求:
写一个函数,以一个无符号整数为参数,返回其汉明权重。例如,‘11’的二进制表示为'00000000000000000000000000001011', 故函数应当返回3。
汉明权重:指一个字符串中非零字符的个数;对于二进制串,即其中‘1’的个数。
难度:简单
分析:
将十进制参数转换为二进制,然后计算其中1的个数即可。
“
- 浅谈java类与对象
15700786134
java
java是一门面向对象的编程语言,类与对象是其最基本的概念。所谓对象,就是一个个具体的物体,一个人,一台电脑,都是对象。而类,就是对象的一种抽象,是多个对象具有的共性的一种集合,其中包含了属性与方法,就是属于该类的对象所具有的共性。当一个类创建了对象,这个对象就拥有了该类全部的属性,方法。相比于结构化的编程思路,面向对象更适用于人的思维
- linux下双网卡同一个IP
被触发
linux
转自:
http://q2482696735.blog.163.com/blog/static/250606077201569029441/
由于需要一台机器有两个网卡,开始时设置在同一个网段的IP,发现数据总是从一个网卡发出,而另一个网卡上没有数据流动。网上找了下,发现相同的问题不少:
一、
关于双网卡设置同一网段IP然后连接交换机的时候出现的奇怪现象。当时没有怎么思考、以为是生成树
- 安卓按主页键隐藏程序之后无法再次打开
肆无忌惮_
安卓
遇到一个奇怪的问题,当SplashActivity跳转到MainActivity之后,按主页键,再去打开程序,程序没法再打开(闪一下),结束任务再开也是这样,只能卸载了再重装。而且每次在Log里都打印了这句话"进入主程序"。后来发现是必须跳转之后再finish掉SplashActivity
本来代码:
// 销毁这个Activity
fin
- 通过cookie保存并读取用户登录信息实例
知了ing
JavaScripthtml
通过cookie的getCookies()方法可获取所有cookie对象的集合;通过getName()方法可以获取指定的名称的cookie;通过getValue()方法获取到cookie对象的值。另外,将一个cookie对象发送到客户端,使用response对象的addCookie()方法。
下面通过cookie保存并读取用户登录信息的例子加深一下理解。
(1)创建index.jsp文件。在改
- JAVA 对象池
矮蛋蛋
javaObjectPool
原文地址:
http://www.blogjava.net/baoyaer/articles/218460.html
Jakarta对象池
☆为什么使用对象池
恰当地使用对象池化技术,可以有效地减少对象生成和初始化时的消耗,提高系统的运行效率。Jakarta Commons Pool组件提供了一整套用于实现对象池化
- ArrayList根据条件+for循环批量删除的方法
alleni123
java
场景如下:
ArrayList<Obj> list
Obj-> createTime, sid.
现在要根据obj的createTime来进行定期清理。(释放内存)
-------------------------
首先想到的方法就是
for(Obj o:list){
if(o.createTime-currentT>xxx){
- 阿里巴巴“耕地宝”大战各种宝
百合不是茶
平台战略
“耕地保”平台是阿里巴巴和安徽农民共同推出的一个 “首个互联网定制私人农场”,“耕地宝”由阿里巴巴投入一亿 ,主要是用来进行农业方面,将农民手中的散地集中起来 不仅加大农民集体在土地上面的话语权,还增加了土地的流通与 利用率,提高了土地的产量,有利于大规模的产业化的高科技农业的 发展,阿里在农业上的探索将会引起新一轮的产业调整,但是集体化之后农民的个体的话语权 将更少,国家应出台相应的法律法规保护
- Spring注入有继承关系的类(1)
bijian1013
javaspring
一个类一个类的注入
1.AClass类
package com.bijian.spring.test2;
public class AClass {
String a;
String b;
public String getA() {
return a;
}
public void setA(Strin
- 30岁转型期你能否成为成功人士
bijian1013
成功
很多人由于年轻时走了弯路,到了30岁一事无成,这样的例子大有人在。但同样也有一些人,整个职业生涯都发展得很优秀,到了30岁已经成为职场的精英阶层。由于做猎头的原因,我们接触很多30岁左右的经理人,发现他们在职业发展道路上往往有很多致命的问题。在30岁之前,他们的职业生涯表现很优秀,但从30岁到40岁这一段,很多人
- [Velocity三]基于Servlet+Velocity的web应用
bit1129
velocity
什么是VelocityViewServlet
使用org.apache.velocity.tools.view.VelocityViewServlet可以将Velocity集成到基于Servlet的web应用中,以Servlet+Velocity的方式实现web应用
Servlet + Velocity的一般步骤
1.自定义Servlet,实现VelocityViewServl
- 【Kafka十二】关于Kafka是一个Commit Log Service
bit1129
service
Kafka is a distributed, partitioned, replicated commit log service.这里的commit log如何理解?
A message is considered "committed" when all in sync replicas for that partition have applied i
- NGINX + LUA实现复杂的控制
ronin47
lua nginx 控制
安装lua_nginx_module 模块
lua_nginx_module 可以一步步的安装,也可以直接用淘宝的OpenResty
Centos和debian的安装就简单了。。
这里说下freebsd的安装:
fetch http://www.lua.org/ftp/lua-5.1.4.tar.gz
tar zxvf lua-5.1.4.tar.gz
cd lua-5.1.4
ma
- java-14.输入一个已经按升序排序过的数组和一个数字, 在数组中查找两个数,使得它们的和正好是输入的那个数字
bylijinnan
java
public class TwoElementEqualSum {
/**
* 第 14 题:
题目:输入一个已经按升序排序过的数组和一个数字,
在数组中查找两个数,使得它们的和正好是输入的那个数字。
要求时间复杂度是 O(n) 。如果有多对数字的和等于输入的数字,输出任意一对即可。
例如输入数组 1 、 2 、 4 、 7 、 11 、 15 和数字 15 。由于
- Netty源码学习-HttpChunkAggregator-HttpRequestEncoder-HttpResponseDecoder
bylijinnan
javanetty
今天看Netty如何实现一个Http Server
org.jboss.netty.example.http.file.HttpStaticFileServerPipelineFactory:
pipeline.addLast("decoder", new HttpRequestDecoder());
pipeline.addLast(&quo
- java敏感词过虑-基于多叉树原理
cngolon
违禁词过虑替换违禁词敏感词过虑多叉树
基于多叉树的敏感词、关键词过滤的工具包,用于java中的敏感词过滤
1、工具包自带敏感词词库,第一次调用时读入词库,故第一次调用时间可能较长,在类加载后普通pc机上html过滤5000字在80毫秒左右,纯文本35毫秒左右。
2、如需自定义词库,将jar包考入WEB-INF工程的lib目录,在WEB-INF/classes目录下建一个
utf-8的words.dict文本文件,
- 多线程知识
cuishikuan
多线程
T1,T2,T3三个线程工作顺序,按照T1,T2,T3依次进行
public class T1 implements Runnable{
@Override
 
- spring整合activemq
dalan_123
java spring jms
整合spring和activemq需要搞清楚如下的东东1、ConnectionFactory分: a、spring管理连接到activemq服务器的管理ConnectionFactory也即是所谓产生到jms服务器的链接 b、真正产生到JMS服务器链接的ConnectionFactory还得
- MySQL时间字段究竟使用INT还是DateTime?
dcj3sjt126com
mysql
环境:Windows XPPHP Version 5.2.9MySQL Server 5.1
第一步、创建一个表date_test(非定长、int时间)
CREATE TABLE `test`.`date_test` (`id` INT NOT NULL AUTO_INCREMENT ,`start_time` INT NOT NULL ,`some_content`
- Parcel: unable to marshal value
dcj3sjt126com
marshal
在两个activity直接传递List<xxInfo>时,出现Parcel: unable to marshal value异常。 在MainActivity页面(MainActivity页面向NextActivity页面传递一个List<xxInfo>): Intent intent = new Intent(this, Next
- linux进程的查看上(ps)
eksliang
linux pslinux ps -llinux ps aux
ps:将某个时间点的进程运行情况选取下来
转载请出自出处:http://eksliang.iteye.com/admin/blogs/2119469
http://eksliang.iteye.com
ps 这个命令的man page 不是很好查阅,因为很多不同的Unix都使用这儿ps来查阅进程的状态,为了要符合不同版本的需求,所以这个
- 为什么第三方应用能早于System的app启动
gqdy365
System
Android应用的启动顺序网上有一大堆资料可以查阅了,这里就不细述了,这里不阐述ROM启动还有bootloader,软件启动的大致流程应该是启动kernel -> 运行servicemanager 把一些native的服务用命令启动起来(包括wifi, power, rild, surfaceflinger, mediaserver等等)-> 启动Dalivk中的第一个进程Zygot
- App Framework发送JSONP请求(3)
hw1287789687
jsonp跨域请求发送jsonpajax请求越狱请求
App Framework 中如何发送JSONP请求呢?
使用jsonp,详情请参考:http://json-p.org/
如何发送Ajax请求呢?
(1)登录
/***
* 会员登录
* @param username
* @param password
*/
var user_login=function(username,password){
// aler
- 发福利,整理了一份关于“资源汇总”的汇总
justjavac
资源
觉得有用的话,可以去github关注:https://github.com/justjavac/awesome-awesomeness-zh_CN 通用
free-programming-books-zh_CN 免费的计算机编程类中文书籍
精彩博客集合 hacke2/hacke2.github.io#2
ResumeSample 程序员简历
- 用 Java 技术创建 RESTful Web 服务
macroli
java编程WebREST
转载:http://www.ibm.com/developerworks/cn/web/wa-jaxrs/
JAX-RS (JSR-311) 【 Java API for RESTful Web Services 】是一种 Java™ API,可使 Java Restful 服务的开发变得迅速而轻松。这个 API 提供了一种基于注释的模型来描述分布式资源。注释被用来提供资源的位
- CentOS6.5-x86_64位下oracle11g的安装详细步骤及注意事项
超声波
oraclelinux
前言:
这两天项目要上线了,由我负责往服务器部署整个项目,因此首先要往服务器安装oracle,服务器本身是CentOS6.5的64位系统,安装的数据库版本是11g,在整个的安装过程中碰到很多的坑,不过最后还是通过各种途径解决并成功装上了。转别写篇博客来记录完整的安装过程以及在整个过程中的注意事项。希望对以后那些刚刚接触的菜鸟们能起到一定的帮助作用。
安装过程中可能遇到的问题(注
- HttpClient 4.3 设置keeplive 和 timeout 的方法
supben
httpclient
ConnectionKeepAliveStrategy kaStrategy = new DefaultConnectionKeepAliveStrategy() {
@Override
public long getKeepAliveDuration(HttpResponse response, HttpContext context) {
long keepAlive
- Spring 4.2新特性-@Import注解的升级
wiselyman
spring 4
3.1 @Import
@Import注解在4.2之前只支持导入配置类
在4.2,@Import注解支持导入普通的java类,并将其声明成一个bean
3.2 示例
演示java类
package com.wisely.spring4_2.imp;
public class DemoService {
public void doSomethin