机器学习探索-推荐引擎算法(实验二)

上篇文章介绍了推荐引擎算法在spark-shell中的操作,实际环境中我们不会仅仅运行一次,

更多的是一次编译多次运行,今天我们开始实验二,不过上次实验的笔录很有用哦。

--------------------------------------------------------------------------------------------------------------------------------------------------------------

   一,处理数据。

   def PrepareData(): (RDD[Rating], Map[Int, String]) = {
    val sc = new SparkContext(new SparkConf().setAppName("Recommend").setMaster("local"))  
    print("开始读取用户评分数据中...")
    val rawUserData = sc.textFile("file:/E:/ml-100k/u.data")
    val rawRatings = rawUserData.map(_.split("\t").take(3))
    val ratingsRDD = rawRatings.map{ case Array(user, movie, rating) => Rating(user.toInt, movie.toInt, rating.toDouble) }
    println("共计: " + ratingsRDD.count.toString() + "条 ratings")
    print("开始读取电影数据中...")
    val itemRDD = sc.textFile("/E:/ml-100k/u.item")
    val movieTitle = itemRDD.map(line => line.split("\\|").take(2)).map(array => (array(0).toInt,array(1))).collect().toMap
    val numRatings = ratingsRDD.count()
    val numUsers = ratingsRDD.map(_.user).distinct().count()
    val numMovies = ratingsRDD.map(_.product).distinct().count()
    println("共计: ratings:" + numRatings + " User " + numUsers + " Movie " + numMovies)
    return (ratingsRDD,movieTitle)    
  }

 

 二,针对用户id推荐电影。

  def RecommendMovies(model:MatrixFactorizationModel,movieTitle:Map[Int,String],inputUserID:Int) = {
    val RecommendMovie = model.recommendProducts(inputUserID, 10)
    var i = 1
    println("针对用户id" + inputUserID + "推荐下列电影:")
    RecommendMovie.foreach{r =>
      println(i.toString() + "." + movieTitle(r.product) + "评分: " + r.rating.toString())
      i += 1
      }
  }

 

 三,针对电影推荐用户。

  def RecommendUsers(model:MatrixFactorizationModel,movieTitle:Map[Int,String],inputMovieID:Int) = {
    val RecommendUser = model.recommendUsers(inputMovieID, 10)
    var i = 1
    println("针对电影 id" + inputMovieID + "电影名: " + movieTitle(inputMovieID.toInt) + "推荐下列用户id:" )
    RecommendUser.foreach{r =>
      println(i.toString + "用户id:" + r.user + "评分:" + r.rating)
      i = i + 1
      }
  }

 

 四,去除不必要的log。

  def SetLogger {
    Logger.getLogger("org").setLevel(Level.OFF)
    Logger.getLogger("com").setLevel(Level.OFF)
    System.setProperty("spark.ui.showConsoleProgress","false")
    Logger.getRootLogger().setLevel(Level.OFF);
  }

 

 五,对使用者相对友好的指令。

  def recommend(model:MatrixFactorizationModel,movieTitle:Map[Int,String]) = {
    var choose = ""
    while (choose != "3") {
      print("请选择要推荐的类型 1.针对用户推荐电影 2.针对电影推荐感兴趣的用户 3.离开?")
      choose = readLine()
      if (choose == "1") {
        print("请输入用户id?")
        val inputUserID = readLine()
        RecommendMovies(model,movieTitle,inputUserID.toInt)
        } else if (choose == "2") {
          print("请输入电影的id?")
          val inputMovieID = readLine()
          RecommendUsers(model,movieTitle,inputMovieID.toInt)
          }
        }  
  }

 

 六,主函数。

  def main(args:Array[String]) {
      val (ratings,movieTitle) = PrepareData()
      val model = ALS.train(ratings,5,20,0.1)
      recommend(model,movieTitle)
  } 

 

编译成功后在windows下运行,需要下载https://github.com/srccodes/hadoop-common-2.2.0-bin,

然后添加系统变量HADOOP_HOME,值是上面那个文件的解压地点,Path中添加$HADOOP_HOME\bin

 

实际执行

机器学习探索-推荐引擎算法(实验二)_第1张图片

 

 机器学习探索-推荐引擎算法(实验二)_第2张图片

 

转载于:https://www.cnblogs.com/flymercurial/p/7868606.html

你可能感兴趣的:(机器学习探索-推荐引擎算法(实验二))