在机器人及其他应用中,除了传统的RGB三通道相机以外,常常还会配置有深度传感器。比较常用的有Kinect,Lidar等等。博主前段时间被研究所导师布置了一个用深度图(depth image)和RGB图片来生成点云的任务。一开始谷歌百度了很久发现居然没有python的解法。实际上这是一个非常简单的问题,只要计算一下二维到三维的映射就可以了。
我自己写了一个转换函数可以直接生成点云了,原始repo在:Github代码库
from PIL import Image
import pandas as pd
import numpy as np
from open3d import read_point_cloud, draw_geometries
import time
class point_cloud_generator():
def __init__(self, rgb_file, depth_file, pc_file, focal_length, scalingfactor):
self.rgb_file = rgb_file
self.depth_file = depth_file
self.pc_file = pc_file
self.focal_length = focal_length
self.scalingfactor = scalingfactor
self.rgb = Image.open(rgb_file)
self.depth = Image.open(depth_file).convert('I')
self.width = self.rgb.size[0]
self.height = self.rgb.size[1]
def calculate(self):
t1=time.time()
depth = np.asarray(self.depth).T
self.Z = depth / self.scalingfactor
X = np.zeros((self.width, self.height))
Y = np.zeros((self.width, self.height))
for i in range(self.width):
X[i, :] = np.full(X.shape[1], i)
self.X = ((X - self.width / 2) * self.Z) / self.focal_length
for i in range(self.height):
Y[:, i] = np.full(Y.shape[0], i)
self.Y = ((Y - self.height / 2) * self.Z) / self.focal_length
df=np.zeros((6,self.width*self.height))
df[0] = self.X.T.reshape(-1)
df[1] = -self.Y.T.reshape(-1)
df[2] = -self.Z.T.reshape(-1)
img = np.array(self.rgb)
df[3] = img[:, :, 0:1].reshape(-1)
df[4] = img[:, :, 1:2].reshape(-1)
df[5] = img[:, :, 2:3].reshape(-1)
self.df=df
t2=time.time()
print('calcualte 3d point cloud Done.',t2-t1)
def write_ply(self):
t1=time.time()
float_formatter = lambda x: "%.4f" % x
points =[]
for i in self.df.T:
points.append("{} {} {} {} {} {} 0\n".format
(float_formatter(i[0]), float_formatter(i[1]), float_formatter(i[2]),
int(i[3]), int(i[4]), int(i[5])))
file = open(self.pc_file, "w")
file.write('''ply
format ascii 1.0
element vertex %d
property float x
property float y
property float z
property uchar red
property uchar green
property uchar blue
property uchar alpha
end_header
%s
''' % (len(points), "".join(points)))
file.close()
t2=time.time()
print("Write into .ply file Done.",t2-t1)
def show_point_cloud(self):
pcd = read_point_cloud(self.pc_file)
draw_geometries([pcd])
a = point_cloud_generator('p.png', 'd.png', 'pc1.ply',
focal_length=50, scalingfactor=1000)
a.calculate()
a.write_ply()
a.show_point_cloud()
df = a.df
np.save('pc.npy',df)
在原代码文件夹里放入RGB图片 ‘p.png’,深度图’d.png’直接运行就可以预览点云啦。
具体的坐标转换原理网上已经有很多解释了,比如坐标转换原理,大家觉得有帮助帮忙在github上点个星吧谢谢!