tensorflow1.30+cuda8.0+cudnn6.0
一、win10
(涉及到权限问题:cmd下最好以管理员身份运行)
1、安装Anaconda3-4.4.0-Windows-x86_64(python3.6.1)
2、安装cuda8.0 + cudnn
cuda: https://developer.nvidia.com/cuda-toolkit-archive
cudnn: https://developer.nvidia.com/rdp/cudnn-download
参考:http://www.cnblogs.com/zhangjianheng/p/6215529.html
http://blog.csdn.net/sb19931201/article/details/53648615
官网说明:
4.3. Installing cuDNN on Windows The following steps describe how to build a cuDNN dependent program.
In the following sections: ‣ your CUDA directory path is referred to as C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0 ‣
your cuDNN directory path is referred to as 1. Navigate to your directory containing cuDNN.
2. Unzip the cuDNN package. cudnn-9.0-windows7-x64-v7.zip or cudnn-9.0-windows10-x64-v7.zip
3. Copy the following files into the CUDA Toolkit directory.
将cudnn下的3个文件拷贝到相应目录下:
a) Copy \cuda\bin\cudnn64_7.dll to C:\Program Files \NVIDIA GPU Computing Toolkit\CUDA\v9.0\bin.
b) Copy \cuda\ include\cudnn.h to C:\Program Files \NVIDIA GPU Computing Toolkit\CUDA\v9.0\include.
c) Copy \cuda\lib\x64\cudnn.lib to C:\Program Files \NVIDIA GPU Computing Toolkit\CUDA\v9.0\lib\x64.
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\bin
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\lib\x64
安装完cuda后:
测试是否使用Gpu
在gputest.py所在目录下,打开cmd,输入:
python gputest.py
输出 Used the gpu 表示gpu调用成功
3、安装 PyTorch
https://zhuanlan.zhihu.com/p/26871672
a、将下载的百度云中的pytorch放到 C:\ProgramData\Anaconda3\Lib\site-packages\ipytorch\
(ipython 为自己创建的目录)
b、以管理员身份运行cmd 执行命令:conda install --offline C:\ProgramData\Anaconda3\Lib\site-packages\ipytorch\pytorch-0.2.1-py36he6bf560_0.2.1cu80.tar.bz2
c、安装torchvision: torchvision不是pytorch的一部分 直接用pip安装就行了。命令如下 :pip install torchvision
版本要求:CUDA 8.0.61和Anaconda3(Python 3.6.1)
测试pytorch是否使用gpu加速:
print(torch.cuda.is_available())
# 返回True代表支持,False代表不支持
教程:https://zhuanlan.zhihu.com/p/25572330
4、安装 OpenCV
参考:http://blog.csdn.net/lwplwf/article/details/61616493
将opencv_python-3.3.0-cp36-cp36m-win_amd64.whl 拷贝到 C:\ProgramData\Anaconda3\Lib\site-packages
- 按Win+R 输入cmd打开命令提示符窗口,进入到Anaconda3\Lib\site-packages文件夹下
- 执行命令pip install opencv_python-3.3.0-cp36-cp36m-win_amd64.whl
报错:
>>> import cv2
RuntimeError: module compiled against API version 0xb but this version of numpy is 0xa
解决:
升级 numpy 版本
pip install -U numpy
5、安装TensorFlow:
参考:http://blog.csdn.net/u010099080/article/details/53418159
网络不行就下载离线安装包,执行命令:pip install --upgrade --ignore-installed tensorflow-gpu
6、安装keras: pip install keras
Linux下:
版本问题:ubuntu16.04 - tensorflow1.3 - cuda8.0.61 - cudnn6.0、anaconda3-4.4.0、pytorch
容易出现问题:网络不好,导致出现Exception 、HTTP
一.安装Cuda
1.安装cuda驱动-375(19/10/2017)
sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt update
sudo apt install nvidia-375
问题:中间输入*security boot password;重启之后蓝屏
2.(测试:nvidia-smi)
3.进入NVIDIA CUDA官方网站:
https://developer.nvidia.com/cuda-toolkit-archive 或者 https://developer.nvidia.com/cuda-downloads
sudo sh cuda8.0.61375.26_linux.run
(sudo service lightdm stop sudo service lightdm restart )
export PATH=/usr/local/cuda/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
测试:nvcc -V --->显示cuda版本信息
4.配置深度学习库cudnn---载地址:https://developer.nvidia.com/rdp/cudnn-download
(cudnn6.0 支持TensorFlow1.30)
(1) 解压下载文件: tar zxvf cudnn*(文件名).tar.gz
(2)拷贝文件:
$ sudo cp include/cudnn.h /usr/include
$ sudo cp lib64/libcudnn* /usr/lib/x86_64-linux-gnu/
$ sudo chmod a+r /usr/lib/x86_64-linux-gnu/libcudnn*
二、安装Tensorflow
1.安装pyenv
(1)
~$: curl -L https://raw.githubusercontent.com/yyuu/pyenv-installer/master/bin/pyenv-installer | bash
(需要安装curl:sudo apt install curl)
(2).安装后需要如下语句加入shell 配置文件 ~\.bashrc
export PATH="$HOME/.pyenv/bin:$PATH"
eval "$(pyenv init -)"
eval "$(pyenv virtualenv-init -)"
最后,更新环境变量
~$: source ~/.bashrc
2.安装anaconda3-4.4.0
(1)重启termimal, 使用pyenv 安装anaconda ,当前推荐3-4.4.0版本
~$: pyenv install anaconda3-4.4.0
问题:a.导致出现 **ubuntu use python ** 版本问题,可能是本地用户环境下安装Anaconda需要卸载:
(sudo rm -rf Anocanda* ,然后,在~/.bashrc中将本地anaconda的路径删除)
b.网络问题
(2)安装后切换的anaconda 环境
~$: pyenv global anaconda3-4.4.0
(3)使用conda命令查看所有的库:
~$: conda list
问题:~$: jupyter notebook
打不开,出现“**Version 'GLIBCXX_3.4.21' not found (required by /usr/lib/firefox/firefox)”
解决:conda install libgcc
注:安装TensorFlow和pytorch都是在pyenv global anaconda3-4.4.0环境下
3.安装Tensorflow1.3
(https://www.tensorflow.org/install/)
GPU版本:
~$: pip install --ignore-installed --upgrade https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.3.0-cp36-cp36m-linux_x86_64.whl
测试:
~$: python
>>> import tensorflow as tf
>>>
4.安装pytorch
(http://pytorch.org)
Gpu版本:~$: conda install pytorch torchvision cuda80 -c soumith
测试:
~$: python
>>> import torch
>>> print(torch.cuda.is_available())
返回TRUE表示pytorch 支持gpu加速。
(http://www.jianshu.com/p/5ae644748f21)