- 代码随想录|图论理论基础
1.图的种类(有向图和无向图)有向图:图中边有方向无向图:图中边无方向加权有向图:图中边是有权值和方向的,无向图也是如此2.度(无向图中有几条边连接该节点,该节点就有几度)出度:从该节点出发的边的个数入度:指向该节点边的个数3.连通性(在图中表示节点的联通情况,我们称之为连通性)连通图:在无向图中,任何两个节点都是可以到达的(可以借助其他节点)非连通图:有节点不能到达其他节点强连通图:在有向图中,
- 一些并发常见的问题
一入JAVA毁终身
学习记录java算法开发语言
一.现在有A,B,C三个线程如何同时进行,在并发情况下如何依次进行,如何保证有序交替执行三种同步工具countdownlatch,cylicBarrier,Semaphorecountdownlatch:类似于一个起跑线,所有来的线程到这先等待,到齐后倒计时一起跑cylicBarrier:类似与一个大巴,里面有许多的座位,等到所有的人都上车以后才开始跑Semaphore:信号量,类似于给线程加权,
- GIF&DDE
qq_39573780
红外图像处理计算机视觉算法
红外图像动态范围压缩GIF&DDE本文主要介绍了一种高动态范围图像转化为8位可视图像的方法,根据论文[[1]][id]总结实现算法流程图1:算法流程图步骤:使用导向滤波将图像分为基础层和细节层,基础层表示图像的整体结构信息,细节层表示图像的细节纹理信息。对基础层使用直方图投影操作,将图像的动态范围从[0,65535]映射到[0,255]对细节层使用增益掩膜进行增强对基础层和细节层加权求和得到输出图
- 【GNSS原理】【最小二乘法】Chapter.5 GNSS定位算法——LS和WLS方法 [2025年4月]
牵星术小白
GNSS原理算法最小二乘法机器学习c++
Chapter.5GNSS定位算法——LS和WLS方法作者:齐花Guyc(CAUC)文章目录Chapter.5GNSS定位算法——LS和WLS方法一、引言二、LS方法三、WLS方法四、GNSSPVT解算流程中的LS和WLS一、引言在GNSS定位中,最小二乘法是一种核心算法,用于根据接收机获取的观测数据(如伪距、载波相位等)估算用户的位置、速度和时间偏差(PVT解算)。二、LS方法最小二乘法的核心是
- 谷歌开源音乐生成模型速览:magenta-realtime
Open-source-AI
前沿开源人工智能语言模型音视频算法音乐生成
MagentaRealTime模型一、模型概述MagentaRealTime是由GoogleDeepMind开发的开源音乐生成模型,基于MusicFXDJ和LyriaRealTime同样的研究技术构建。它能够通过文本提示、音频示例或多种文本提示及音频示例的加权组合来持续生成音乐音频,在资源有限的环境中(如现场表演或免费ColabTPU)也能部署,支持实时、连续的音乐音频生成。二、使用条款代码库基于
- Transformer 中 QKV 流向全解析(含注意力机制箭头图示)
Accelemate
transformer人工智能深度学习
QKV是什么?在Attention机制中,我们通过Query(查询)与一组Key-Value(键-值)对计算注意力权重,然后用这些权重对Value进行加权求和,从而输出当前时刻关注上下文的结果。Transformer中注意力模块分布Transformer结构中含有三种注意力机制,每个机制都会涉及Q、K、V的构建和使用:编码器自注意力(EncoderSelf-Attention)解码器自注意力(De
- Cilium动手实验室: 精通之旅---32.Getting Started with the Isovalent Load Balancer
上海运维Q先生
CiliumCilium云原生k8s
Cilium动手实验室:精通之旅---32.GettingStartedwiththeIsovalentLoadBalancer1.IsovalentLoadBalancer1.1环境确认1.2多租户1.3配置VIP1.4配置Service1.5配置后端1.6配置服务IP1.7BGP配置1.8测试Service1.9添加后端1.10再次测试2.HTTP支持2.1vHost支持2.2加权后端2.3持
- 如何开通自己想要的算法?
韭菜修养
区块链大数据
首先作为散户,我们应该清楚,我们为什么要开通算法交易,开通算法交易的好处是什么?开通算法交易的理由有三:一:降低交易费用大单指令通常被拆分为若干个小单指令渐次进入市场。这个策略的成功程度可以通过比较同一时期的平均购买价格与成交量加权平均价来衡量。二:是套利典型的套利策略通常包含三四个金融资产,如根据外汇市场利率平价理论,国内债券的价格、以外币标价的债券价格、汇率现货及汇率远期合约价格之间将产生一定
- 最小二乘法的理论推导
士兵突击许三多
最小二乘法最小二乘法
最小二乘法的理论推导最小二乘法是一种通过最小化误差平方和来估计模型参数的方法。下面我将详细推导线性最小二乘法的理论过程,并给出相应的LaTeX公式。问题描述给定一组观测数据点(xi,yi),i=1,2,...,n(x_i,y_i),i=1,2,...,n(xi,yi),i=1,2,...,n,我们希望找到线性模型:y=ax+by=ax+by=ax+b使得模型预测值与实际观测值之间的误差平方和最小。
- Matlab 点云加权最小二乘法优化
完美代码
matlab最小二乘法开发语言点云
Matlab点云加权最小二乘法优化随着计算机视觉和三维图形学的发展,点云数据的处理和分析变得越来越重要。点云是三维空间中由大量的点组成的数据集合,常用于描述物体的形状和表面几何信息。在点云处理中,经常需要使用迭代加权最小二乘法对点云数据进行拟合优化。本文将介绍使用Matlab实现点云迭代加权最小二乘法优化的方法,并提供相应的源代码。点云表达首先,我们需要将点云数据以合适的方式表示在Matlab中。
- 最小二乘法
superdont
计算机视觉入门最小二乘法算法机器学习matlab矩阵人工智能计算机视觉
最小二乘法(LeastSquaresMethod)是一种数学优化技术,它通过最小化误差的平方和寻找数据的最佳函数匹配。具体来说,它可以用于线性回归分析,即找到一条最佳拟合直线(或更一般的曲线或面),使得实际观察数据点到这条直线(或曲线/面)的垂直距离(也就是误差)的平方和达到最小。在数学表示上,如果有一组观测数据集((x_i,y_i)),其中(i=1,2,…,n),最小二乘法旨在找到一个模型(y=
- 最小二乘法算法(个人总结版)
爱吃辣椒的年糕
算法使用深度学习算法人工智能fpga开发信息与通信最小二乘法随笔
最小二乘法(LeastSquaresMethod)是一种通过最小化误差平方和来拟合数据的回归分析方法。它被广泛应用于线性回归、多元回归以及其他数据拟合问题中。以下是详细的教程,涵盖基本概念、数学推导、具体步骤和实现代码。1.最小二乘法基本概念最小二乘法是一种用于数据拟合的统计方法,通过最小化观测数据与模型预测值之间的误差平方和,求解模型参数。2.线性回归的最小二乘法线性回归是最简单的最小二乘法应用
- 高斯混合模型(Gaussian Mixture Model, GMM)
爱看烟花的码农
ML机器学习概率论人工智能
一、GMM是什么?高斯混合模型(GaussianMixtureModel,GMM)是一种概率模型,用于表示数据分布是由多个高斯分布(正态分布)的加权组合构成的。它假设数据点是从若干个高斯分布中生成的,每个高斯分布代表一个“簇”或“子群体”。GMM是一种软聚类方法,与K-Means不同,它不仅能将数据点分配到某个簇,还能给出数据点属于每个簇的概率。1.1核心思想混合模型:GMM认为数据集中的每个数据
- kafka操作命令详解
圣·杰克船长
kafkakafka分布式
目录1、集群运维命令1.1、集群启停命令1.3、集群迁移命令1.4、权限管理命令1.4.1、权限参数介绍1.4.2、增加权限命令1.4.3、移出权限命令1.4.4、查看所有topic权限命令1.4.5、查看某个topic权限命令2、生产者命令2.1、创建topic命令2.2、删除topic命令2.3、修改topic命令2.3.1、修改配置命令2.3.2、删除配置命令2.4、查询topic命令2.4
- 机器学习与深度学习21-信息论
my_q
机器学习与深度学习机器学习深度学习人工智能
目录前文回顾1.信息上的概念2.相对熵是什么3.互信息是什么4.条件熵和条件互信息5.最大熵模型6.信息增益与基尼不纯度前文回顾上一篇文章链接:地址1.信息上的概念信息熵(Entropy)是信息理论中用于度量随机变量不确定性的概念。它表示了对一个随机事件发生的预测的平均困惑程度或信息量。对于一个离散型随机变量X,其信息熵H(X)定义为所有可能取值的负概率加权平均。数学上,可以使用以下公式来计算离散
- 最小二乘法,正则推导
若曦爹
https://blog.csdn.net/qq_40061206/article/details/112447541
- 多分类性能评估方法
只微
杂分类数据挖掘人工智能机器学习
多分类性能评估方法1.micro-averaging(微平均)2.macro-averaging(宏平均)3.weighted-averaging(加权平均)在评估多分类模型性能时,我们经常会使用一些指标来衡量其表现。其中,micro-averaging、macro-averaging和weighted-averaging是常见的评估指标之一。它们在衡量分类器的精确度、召回率和F1分数时发挥着重要
- Opencv4 c++ 自用笔记 04 图像滤波与边缘检测
BandieraRosa
opencvc++笔记计算机视觉opencv
图像滤波与边缘检测直接采集到的图像可能带有噪声的干扰,因此去除噪声是图像预处理中十分重要的一步。图像滤波是图像噪声去除的重要方式。图像卷积卷积操作广泛应用于信号处理领域,而图像本质上可以视为一种二维信号数据。卷积过程可以理解为一个卷积模板(卷积核)在图像上逐像素移动,对模板覆盖区域内的像素值进行加权求和,计算结果作为模板中心位置的输出值。为避免卷积输出值超出数据表示范围,通常对卷积模板进行归一化处
- LVS | LVS 10种调度算法简介
FixedSchedulingMethod静态调服方法1、轮叫调度(RoundRobin)调度器通过“轮叫”调度算法将外部请求按顺序轮流分配到集群中的真实服务器上,它均等地对待每一台服务器,而不管服务器上实际的连接数和系统负载。大锅饭调度:rr-纯轮询方式,比较垃圾。把每项请求按顺序在真正服务器中分派2、加权轮叫(WeightedRoundRobin)调度器通过“加权轮叫”调度算法根据真实服务器的
- 【三】LVS-12种调度算法详解
星愿的星
lvs
1.lvs调度算法类型1.1静态方法仅根据算法本身进行调度,不考虑RS的负载情况1.2动态方法主要根据每RS当前的负载状态及调度算法进行调度Overhead=value较小的RS将被调度1.1lvs静态调度算法1.1.1RR(轮询算法):roundrobin轮询RS分别被调度,当RS配置有差别时不推荐1.1.2WRR(加权轮询算法):WeightedRR,加权轮询根据RS的配置进行加权调度,性能差
- 神经网络学习-神经网络简介【Transformer、pytorch、Attention介绍与区别】
Crabfishhhhh
神经网络学习transformerpythonpytorch
神经网络学习笔记本笔记总结了神经网络基础理论、常见模型结构、优化方法以及PyTorch实践,适用于初学者和进阶者查阅学习。一、神经网络基础1.神经元模型神经元通过输入加权求和后激活:y=f(∑i=1nwixi+b)y=f\left(\sum_{i=1}^{n}w_ix_i+b\right)y=f(i=1∑nwixi+b)xix_ixi:输入wiw_iwi:权重bbb:偏置fff:激活函数,如ReL
- 解锁Java领域Spring Cloud的负载均衡策略
解锁Java领域SpringCloud的负载均衡策略:从早餐店排队到微服务调度的奥秘关键词:SpringCloud、负载均衡、Ribbon、SpringCloudLoadBalancer、轮询策略、最少连接、加权路由摘要:在微服务架构中,如何让多个服务实例“公平干活”又“高效协作”?本文将用早餐店排队的生活化案例,带您拆解SpringCloud中负载均衡的核心策略。从基础概念到算法原理,从代码实战
- Golang 中间件的负载均衡策略
Golang编程笔记
Golang开发实战Golang编程笔记golang中间件负载均衡ai
Golang中间件的负载均衡策略关键词:Golang、中间件、负载均衡、轮询、加权轮询、最少连接、一致性哈希、性能优化摘要:本文将深入探讨Golang中间件中常见的负载均衡策略,包括轮询、加权轮询、最少连接和一致性哈希等算法。我们将从基础概念出发,逐步分析每种策略的实现原理、适用场景和性能特点,并通过实际代码示例展示如何在Golang中间件中实现这些负载均衡策略,帮助开发者构建高性能、高可用的分布
- 图论刷题1
zc.ovo
图论算法深度优先
582div3G.PathQueries题意给定一颗nnn个点的加权树,以及mmm次询问,每次询问输出存在简单路径中边权不大于xxx的顶点对数(1≤n,m≤2⋅1051\len,m\le2\cdot10^51≤n,m≤2⋅105)——树中的顶点数和查询数。x≤2⋅105x\le2\cdot10^5x≤2⋅105思路可以发现xxx越大则满足的点对数越多,所以考虑离线按xxx从小到大处理,每次将所有边
- VM图像处理之图像二值化
就是有点傻
机器视觉图像处理计算机视觉人工智能
什么是灰度?灰度(Grayscale)是指将彩色图像转换为仅包含亮度信息(黑白过渡)的单通道图像的过程或结果。灰度图像中每个像素的数值代表该点的明暗程度,而不包含颜色信息。亮度代替颜色:灰度图像用单一通道的数值(通常为0-255)表示像素的亮度:0代表纯黑(最暗)255代表纯白(最亮)中间值为不同深浅的灰色从彩色到灰度的常见算法:加权平均法(最常用):Gray=0.299*R+0.587*G+0.
- OpenCV CUDA模块图像处理------图像融合函数blendLinear()
村北头的码农
OpenCVopencv图像处理人工智能
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述该函数执行线性融合(加权平均)两个图像img1和img2,使用对应的权重图weights1和weights2。融合公式如下:result(x,y)=img1(x,y)⋅weights1(x,y)+img2(x,y)⋅weights2(x,y)result(x,y)
- 【华为OD机试真题】- 开源项目热榜(JS解答)
有梦想的兔斯基
华为od开源javascript
题目描述:某个开源社区希望将最近热度比较高的开源项目出一个榜单,推荐给社区里面的开发者。对于每个开源项目,开发者可以进行关注(watch)、收藏(star)、fork、提issue、提交合并请求(MR)等。数据库里面统计了每个开源项目关注、收藏、fork、issue、MR的数量,开源项目的热度根据这5个维度的加权求和进行排序。H=W(watch)x#watch+W(star)x#star+W(fo
- Unity动画导演:Animator解密
你一身傲骨怎能输
游戏引擎unity游戏引擎
文章摘要Unity动画系统核心技术解析本文深入剖析Unity动画系统的三大核心技术:一、动画混合原理数学实现:位置混合:线性插值(Lerp)旋转混合:四元数球面插值(Slerp)多动画混合:加权平均公式混合类型:过渡混合、BlendTree混合、动画层混合伪代码展示骨骼变换的混合计算二、动画事件机制功能:在指定动画帧触发预设函数应用场景:伤害判定、音效触发实现方式:AnimationClip内嵌事
- AWS 创建VPC 并且添加权限控制
Rainly2000
javaintellij-ideaandroid
AWS创建VPC并且添加权限控制以下是完整的从0到1在AWS中创建VPC并配置权限的步骤(包含网络配置、安全组权限和实例访问):1.创建VPC步骤:登录AWS控制台访问AWSVPC控制台,点击创建VPC。配置基础信息名称标签:my-vpcIPv4CIDR块:10.0.0.0/16(私有IP地址范围)取消勾选DNS主机名和DNS解析(可选,默认启用)其他保持默认,点击创建VPC。结果:生成1个VPC
- 【机器学习解惑】多分类问题的性能如何评估?
云博士的AI课堂
大模型技术开发与实践哈佛博后带你玩转机器学习深度学习机器学习分类人工智能性能评估多分类评估混淆矩阵宏平均
深入剖析多分类问题的性能评估方法目录多分类评估指标概述核心评估方法详解2.1准确率(Accuracy)2.2混淆矩阵(ConfusionMatrix)2.3精确率(Precision)、召回率(Recall)与F1-Score2.4宏平均(Macro)、微平均(Micro)与加权平均(Weighted)2.5ROC-AUC(多分类扩展)2.6对数损失(LogLoss)2.7Cohen’sKappa
- ViewController添加button按钮解析。(翻译)
张亚雄
c
<div class="it610-blog-content-contain" style="font-size: 14px"></div>// ViewController.m
// Reservation software
//
// Created by 张亚雄 on 15/6/2.
- mongoDB 简单的增删改查
开窍的石头
mongodb
在上一篇文章中我们已经讲了mongodb怎么安装和数据库/表的创建。在这里我们讲mongoDB的数据库操作
在mongo中对于不存在的表当你用db.表名 他会自动统计
下边用到的user是表明,db代表的是数据库
添加(insert):
- log4j配置
0624chenhong
log4j
1) 新建java项目
2) 导入jar包,项目右击,properties—java build path—libraries—Add External jar,加入log4j.jar包。
3) 新建一个类com.hand.Log4jTest
package com.hand;
import org.apache.log4j.Logger;
public class
- 多点触摸(图片缩放为例)
不懂事的小屁孩
多点触摸
多点触摸的事件跟单点是大同小异的,上个图片缩放的代码,供大家参考一下
import android.app.Activity;
import android.os.Bundle;
import android.view.MotionEvent;
import android.view.View;
import android.view.View.OnTouchListener
- 有关浏览器窗口宽度高度几个值的解析
换个号韩国红果果
JavaScripthtml
1 元素的 offsetWidth 包括border padding content 整体的宽度。
clientWidth 只包括内容区 padding 不包括border。
clientLeft = offsetWidth -clientWidth 即这个元素border的值
offsetLeft 若无已定位的包裹元素
- 数据库产品巡礼:IBM DB2概览
蓝儿唯美
db2
IBM DB2是一个支持了NoSQL功能的关系数据库管理系统,其包含了对XML,图像存储和Java脚本对象表示(JSON)的支持。DB2可被各种类型的企 业使用,它提供了一个数据平台,同时支持事务和分析操作,通过提供持续的数据流来保持事务工作流和分析操作的高效性。 DB2支持的操作系统
DB2可应用于以下三个主要的平台:
工作站,DB2可在Linus、Unix、Windo
- java笔记5
a-john
java
控制执行流程:
1,true和false
利用条件表达式的真或假来决定执行路径。例:(a==b)。它利用条件操作符“==”来判断a值是否等于b值,返回true或false。java不允许我们将一个数字作为布尔值使用,虽然这在C和C++里是允许的。如果想在布尔测试中使用一个非布尔值,那么首先必须用一个条件表达式将其转化成布尔值,例如if(a!=0)。
2,if-els
- Web开发常用手册汇总
aijuans
PHP
一门技术,如果没有好的参考手册指导,很难普及大众。这其实就是为什么很多技术,非常好,却得不到普遍运用的原因。
正如我们学习一门技术,过程大概是这个样子:
①我们日常工作中,遇到了问题,困难。寻找解决方案,即寻找新的技术;
②为什么要学习这门技术?这门技术是不是很好的解决了我们遇到的难题,困惑。这个问题,非常重要,我们不是为了学习技术而学习技术,而是为了更好的处理我们遇到的问题,才需要学习新的
- 今天帮助人解决的一个sql问题
asialee
sql
今天有个人问了一个问题,如下:
type AD value
A  
- 意图对象传递数据
百合不是茶
android意图IntentBundle对象数据的传递
学习意图将数据传递给目标活动; 初学者需要好好研究的
1,将下面的代码添加到main.xml中
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http:/
- oracle查询锁表解锁语句
bijian1013
oracleobjectsessionkill
一.查询锁定的表
如下语句,都可以查询锁定的表
语句一:
select a.sid,
a.serial#,
p.spid,
c.object_name,
b.session_id,
b.oracle_username,
b.os_user_name
from v$process p, v$s
- mac osx 10.10 下安装 mysql 5.6 二进制文件[tar.gz]
征客丶
mysqlosx
场景:在 mac osx 10.10 下安装 mysql 5.6 的二进制文件。
环境:mac osx 10.10、mysql 5.6 的二进制文件
步骤:[所有目录请从根“/”目录开始取,以免层级弄错导致找不到目录]
1、下载 mysql 5.6 的二进制文件,下载目录下面称之为 mysql5.6SourceDir;
下载地址:http://dev.mysql.com/downl
- 分布式系统与框架
bit1129
分布式
RPC框架 Dubbo
什么是Dubbo
Dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案。其核心部分包含: 远程通讯: 提供对多种基于长连接的NIO框架抽象封装,包括多种线程模型,序列化,以及“请求-响应”模式的信息交换方式。 集群容错: 提供基于接
- 那些令人蛋痛的专业术语
白糖_
springWebSSOIOC
spring
【控制反转(IOC)/依赖注入(DI)】:
由容器控制程序之间的关系,而非传统实现中,由程序代码直接操控。这也就是所谓“控制反转”的概念所在:控制权由应用代码中转到了外部容器,控制权的转移,是所谓反转。
简单的说:对象的创建又容器(比如spring容器)来执行,程序里不直接new对象。
Web
【单点登录(SSO)】:SSO的定义是在多个应用系统中,用户
- 《给大忙人看的java8》摘抄
braveCS
java8
函数式接口:只包含一个抽象方法的接口
lambda表达式:是一段可以传递的代码
你最好将一个lambda表达式想象成一个函数,而不是一个对象,并记住它可以被转换为一个函数式接口。
事实上,函数式接口的转换是你在Java中使用lambda表达式能做的唯一一件事。
方法引用:又是要传递给其他代码的操作已经有实现的方法了,这时可以使
- 编程之美-计算字符串的相似度
bylijinnan
java算法编程之美
public class StringDistance {
/**
* 编程之美 计算字符串的相似度
* 我们定义一套操作方法来把两个不相同的字符串变得相同,具体的操作方法为:
* 1.修改一个字符(如把“a”替换为“b”);
* 2.增加一个字符(如把“abdd”变为“aebdd”);
* 3.删除一个字符(如把“travelling”变为“trav
- 上传、下载压缩图片
chengxuyuancsdn
下载
/**
*
* @param uploadImage --本地路径(tomacat路径)
* @param serverDir --服务器路径
* @param imageType --文件或图片类型
* 此方法可以上传文件或图片.txt,.jpg,.gif等
*/
public void upload(String uploadImage,Str
- bellman-ford(贝尔曼-福特)算法
comsci
算法F#
Bellman-Ford算法(根据发明者 Richard Bellman 和 Lester Ford 命名)是求解单源最短路径问题的一种算法。单源点的最短路径问题是指:给定一个加权有向图G和源点s,对于图G中的任意一点v,求从s到v的最短路径。有时候这种算法也被称为 Moore-Bellman-Ford 算法,因为 Edward F. Moore zu 也为这个算法的发展做出了贡献。
与迪科
- oracle ASM中ASM_POWER_LIMIT参数
daizj
ASMoracleASM_POWER_LIMIT磁盘平衡
ASM_POWER_LIMIT
该初始化参数用于指定ASM例程平衡磁盘所用的最大权值,其数值范围为0~11,默认值为1。该初始化参数是动态参数,可以使用ALTER SESSION或ALTER SYSTEM命令进行修改。示例如下:
SQL>ALTER SESSION SET Asm_power_limit=2;
- 高级排序:快速排序
dieslrae
快速排序
public void quickSort(int[] array){
this.quickSort(array, 0, array.length - 1);
}
public void quickSort(int[] array,int left,int right){
if(right - left <= 0
- C语言学习六指针_何谓变量的地址 一个指针变量到底占几个字节
dcj3sjt126com
C语言
# include <stdio.h>
int main(void)
{
/*
1、一个变量的地址只用第一个字节表示
2、虽然他只使用了第一个字节表示,但是他本身指针变量类型就可以确定出他指向的指针变量占几个字节了
3、他都只存了第一个字节地址,为什么只需要存一个字节的地址,却占了4个字节,虽然只有一个字节,
但是这些字节比较多,所以编号就比较大,
- phpize使用方法
dcj3sjt126com
PHP
phpize是用来扩展php扩展模块的,通过phpize可以建立php的外挂模块,下面介绍一个它的使用方法,需要的朋友可以参考下
安装(fastcgi模式)的时候,常常有这样一句命令:
代码如下:
/usr/local/webserver/php/bin/phpize
一、phpize是干嘛的?
phpize是什么?
phpize是用来扩展php扩展模块的,通过phpi
- Java虚拟机学习 - 对象引用强度
shuizhaosi888
JAVA虚拟机
本文原文链接:http://blog.csdn.net/java2000_wl/article/details/8090276 转载请注明出处!
无论是通过计数算法判断对象的引用数量,还是通过根搜索算法判断对象引用链是否可达,判定对象是否存活都与“引用”相关。
引用主要分为 :强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Wea
- .NET Framework 3.5 Service Pack 1(完整软件包)下载地址
happyqing
.net下载framework
Microsoft .NET Framework 3.5 Service Pack 1(完整软件包)
http://www.microsoft.com/zh-cn/download/details.aspx?id=25150
Microsoft .NET Framework 3.5 Service Pack 1 是一个累积更新,包含很多基于 .NET Framewo
- JAVA定时器的使用
jingjing0907
javatimer线程定时器
1、在应用开发中,经常需要一些周期性的操作,比如每5分钟执行某一操作等。
对于这样的操作最方便、高效的实现方式就是使用java.util.Timer工具类。
privatejava.util.Timer timer;
timer = newTimer(true);
timer.schedule(
newjava.util.TimerTask() { public void run()
- Webbench
流浪鱼
webbench
首页下载地址 http://home.tiscali.cz/~cz210552/webbench.html
Webbench是知名的网站压力测试工具,它是由Lionbridge公司(http://www.lionbridge.com)开发。
Webbench能测试处在相同硬件上,不同服务的性能以及不同硬件上同一个服务的运行状况。webbench的标准测试可以向我们展示服务器的两项内容:每秒钟相
- 第11章 动画效果(中)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- windows下制作bat启动脚本.
sanyecao2314
javacmd脚本bat
java -classpath C:\dwjj\commons-dbcp.jar;C:\dwjj\commons-pool.jar;C:\dwjj\log4j-1.2.16.jar;C:\dwjj\poi-3.9-20121203.jar;C:\dwjj\sqljdbc4.jar;C:\dwjj\voucherimp.jar com.citsamex.core.startup.MainStart
- Java进行RSA加解密的例子
tomcat_oracle
java
加密是保证数据安全的手段之一。加密是将纯文本数据转换为难以理解的密文;解密是将密文转换回纯文本。 数据的加解密属于密码学的范畴。通常,加密和解密都需要使用一些秘密信息,这些秘密信息叫做密钥,将纯文本转为密文或者转回的时候都要用到这些密钥。 对称加密指的是发送者和接收者共用同一个密钥的加解密方法。 非对称加密(又称公钥加密)指的是需要一个私有密钥一个公开密钥,两个不同的密钥的
- Android_ViewStub
阿尔萨斯
ViewStub
public final class ViewStub extends View
java.lang.Object
android.view.View
android.view.ViewStub
类摘要: ViewStub 是一个隐藏的,不占用内存空间的视图对象,它可以在运行时延迟加载布局资源文件。当 ViewSt