概述
Jackson框架是基于Java平台的一套数据处理工具,被称为“最好的Java Json解析器”。
Jackson框架包含了3个核心库:streaming,databind,annotations.Jackson还包含了其它数据处理类库,此外不作说明。
Jackson版本: 1.x (目前版本从1.1~1.9)与2.x。1.x与2.x从包的命名上可以看出来,1.x的类库中,包命名以:org.codehaus.jackson.xxx开头,而2.x类库中包命令:com.fastxml.jackson.xxx开头
Jackson Home Page:https://github.com/FasterXML/jackson
Jackson Wiki:http://wiki.fasterxml.com/JacksonHome
Jackson doc: https://github.com/FasterXML/jackson-docs
Jackson Download Page:http://wiki.fasterxml.com/JacksonDownload
准备工作
本文所有程序都基于JDK1.7,依赖jackon的三个核心类库:
jackson-core-2.5.3.jar
jackson-annotations-2.5.3.jar
jackson-databind-2.5.3.jar
Jackson处理Json
Jackson提供了三种可选的Json处理方法:流式API(Streaming API) 、树模型(Tree Model)、数据绑定(Data Binding)。从使用角度来看,比较一下这三种处理Json的方式的特性:
Streaming API:是效率最高的处理方式(开销低、读写速度快,但程序编写复杂度高)
Tree Model:是最灵活的处理方式
Data Binding:是最常用的处理方式
下面我们通过例子程序分别使用DataBinding,TreeModel,Streaming的方式来创建和解析Json字符串
1.DataBinding处理Json
Jackson支持Java对象与Json之间的相互转化。java对象序列化为json字符串,json字符串也可以反序列化为相同的java对象。
(1)java对象转化成json:
Province.java
[java] view plain copy
在CODE上查看代码片派生到我的代码片
package com.jackson.json.databinding;
public class Province {
public String name;
public int population;
public String[] city;
}
Country.java
[java] view plain copy
在CODE上查看代码片派生到我的代码片
package com.jackson.json.databinding;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Date;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
public class Country {
// 注意:被序列化的bean的private属性字段需要创建getter方法或者属性字段应该为public
private String country_id;
private Date birthDate;
private List
private String[] lakes;
private List
private Map
public Country() {
// TODO Auto-generated constructor stub
}
public Country(String countryId) {
this.country_id = countryId;
}
public String getCountry_id() {
return country_id;
}
public void setCountry_id(String country_id) {
this.country_id = country_id;
}
public Date getBirthDate() {
return birthDate;
}
public void setBirthDate(Date birthDate) {
this.birthDate = birthDate;
}
public List
return nation;
}
public void setNation(List
this.nation = nation;
}
public String[] getLakes() {
return lakes;
}
public void setLakes(String[] lakes) {
this.lakes = lakes;
}
public Integer get(String key) {
return traffic.get(key);
}
public Map
return traffic;
}
public void setTraffic(Map
this.traffic = traffic;
}
public void addTraffic(String key, Integer value) {
traffic.put(key, value);
}
public List
return provinces;
}
public void setProvinces(List
this.provinces = provinces;
}
@Override
public String toString() {
return "Country [country_id=" + country_id + ", birthDate=" + birthDate
+ ", nation=" + nation + ", lakes=" + Arrays.toString(lakes)
+ ", province=" + provinces + ", traffic=" + traffic + "]";
}
}
JavaBeanSerializeToJson.java
[java] view plain copy
在CODE上查看代码片派生到我的代码片
package com.jackson.json.databinding;
import java.io.File;
import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.List;
import com.fasterxml.jackson.annotation.JsonInclude.Include;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.fasterxml.jackson.databind.SerializationFeature;
public class JavaBeanSerializeToJson {
public static void convert() throws Exception {
// 使用ObjectMapper来转化对象为Json
ObjectMapper mapper = new ObjectMapper();
// 添加功能,让时间格式更具有可读性
SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd");
mapper.setDateFormat(dateFormat);
Country country = new Country("China");
country.setBirthDate(dateFormat.parse("1949-10-01"));
country.setLakes(new String[] { "Qinghai Lake", "Poyang Lake",
"Dongting Lake", "Taihu Lake" });
List
nation.add("Han");
nation.add("Meng");
nation.add("Hui");
nation.add("WeiWuEr");
nation.add("Zang");
country.setNation(nation);
Province province = new Province();
province.name = "Shanxi";
province.population = 37751200;
Province province2 = new Province();
province2.name = "ZheJiang";
province2.population = 55080000;
List
provinces.add(province);
provinces.add(province2);
country.setProvinces(provinces);
country.addTraffic("Train(KM)", 112000);
country.addTraffic("HighWay(KM)", 4240000);
// 为了使JSON视觉上的可读性,增加一行如下代码,注意,在生产中不需要这样,因为这样会增大Json的内容
mapper.configure(SerializationFeature.INDENT_OUTPUT, true);
// 配置mapper忽略空属性
mapper.setSerializationInclusion(Include.NON_EMPTY);
// 默认情况,Jackson使用Java属性字段名称作为 Json的属性名称,也可以使用Jackson annotations(注解)改变Json属性名称
mapper.writeValue(new File("country.json"), country);
}
public static void main(String[] args) throws Exception {
convert();
}
}
程序运行后生成country.json,内容如下:
[html] view plain copy
在CODE上查看代码片派生到我的代码片
{
"country_id" : "China",
"birthDate" : "1949-10-01",
"nation" : [ "Han", "Meng", "Hui", "WeiWuEr", "Zang" ],
"lakes" : [ "Qinghai Lake", "Poyang Lake", "Dongting Lake", "Taihu Lake" ],
"provinces" : [ {
"name" : "Shanxi",
"population" : 37751200
}, {
"name" : "ZheJiang",
"population" : 55080000
} ],
"traffic" : {
"HighWay(KM)" : 4240000,
"Train(KM)" : 112000
}
}
(2)Json字符串反序列化为java对象:
[java] view plain copy
在CODE上查看代码片派生到我的代码片
package com.jackson.json.databinding;
import java.io.File;
import java.io.IOException;
import java.text.SimpleDateFormat;
import java.util.Iterator;
import java.util.List;
import com.fasterxml.jackson.core.JsonParseException;
import com.fasterxml.jackson.databind.DeserializationFeature;
import com.fasterxml.jackson.databind.JsonMappingException;
import com.fasterxml.jackson.databind.ObjectMapper;
/**
* 将Json字符串反序列化为Java对象
*/
public class JsonDeserializeToJava {
public static void main(String[] args) throws Exception {
//ObjectMapper类用序列化与反序列化映射器
ObjectMapper mapper = new ObjectMapper();
File json = new File("country.json");
//当反序列化json时,未知属性会引起的反序列化被打断,这里我们禁用未知属性打断反序列化功能,
//因为,例如json里有10个属性,而我们的bean中只定义了2个属性,其它8个属性将被忽略
mapper.disable(DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES);
//从json映射到java对象,得到country对象后就可以遍历查找,下面遍历部分内容,能说明问题就可以了
Country country = mapper.readValue(json, Country.class);
System.out.println("country_id:"+country.getCountry_id());
//设置时间格式,便于阅读
SimpleDateFormat dateformat = new SimpleDateFormat("yyyy-MM-dd");
String birthDate = dateformat.format(country.getBirthDate());
System.out.println("birthDate:"+birthDate);
List
for (Province province : provinces) {
System.out.println("province:"+province.name + "\n" + "population:"+province.population);
}
}
}
程序运行结果:
[html] view plain copy
在CODE上查看代码片派生到我的代码片
country_id:China
birthDate:1949-10-01
province:Shanxi
population:37751200
province:ZheJiang
population:55080000
2.Tree Model处理Json
(1)tree model生成json:
[java] view plain copy
在CODE上查看代码片派生到我的代码片
package com.jackson.json.treemodel;
import java.io.File;
import java.io.FileWriter;
import com.fasterxml.jackson.core.JsonFactory;
import com.fasterxml.jackson.core.JsonGenerator;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.fasterxml.jackson.databind.SerializationFeature;
import com.fasterxml.jackson.databind.node.ArrayNode;
import com.fasterxml.jackson.databind.node.JsonNodeFactory;
import com.fasterxml.jackson.databind.node.ObjectNode;
public class SerializationExampleTreeModel {
public static void main(String[] args) throws Exception {
//创建一个节点工厂,为我们提供所有节点
JsonNodeFactory factory = new JsonNodeFactory(false);
//创建一个json factory来写tree modle为json
JsonFactory jsonFactory = new JsonFactory();
//创建一个json生成器
JsonGenerator generator = jsonFactory.createGenerator(new FileWriter(new File("country2.json")));
//注意,默认情况下对象映射器不会指定根节点,下面设根节点为country
ObjectMapper mapper = new ObjectMapper();
ObjectNode country = factory.objectNode();
country.put("country_id", "China");
country.put("birthDate", "1949-10-01");
//在Java中,List和Array转化为json后对应的格式符号都是"obj:[]"
ArrayNode nation = factory.arrayNode();
nation.add("Han").add("Meng").add("Hui").add("WeiWuEr").add("Zang");
country.set("nation", nation);
ArrayNode lakes = factory.arrayNode();
lakes.add("QingHai Lake").add("Poyang Lake").add("Dongting Lake").add("Taihu Lake");
country.set("lakes", lakes);
ArrayNode provinces = factory.arrayNode();
ObjectNode province = factory.objectNode();
ObjectNode province2 = factory.objectNode();
province.put("name","Shanxi");
province.put("population", 37751200);
province2.put("name","ZheJiang");
province2.put("population", 55080000);
provinces.add(province).add(province2);
country.set("provinces", provinces);
ObjectNode traffic = factory.objectNode();
traffic.put("HighWay(KM)", 4240000);
traffic.put("Train(KM)", 112000);
country.set("traffic", traffic);
mapper.configure(SerializationFeature.INDENT_OUTPUT, true);
mapper.writeTree(generator, country);
}
}
程序运行生成country2.json,内容如下:
[html] view plain copy
在CODE上查看代码片派生到我的代码片
{"country_id":"China","birthDate":"1949-10-01","nation":["Han","Meng","Hui","WeiWuEr","Zang"],"lakes":["QingHai Lake","Poyang Lake","Dongting Lake","Taihu Lake"],"provinces":[{"name":"Shanxi","population":37751200},{"name":"ZheJiang","population":55080000}],"traffic":{"HighWay(KM)":4240000,"Train(KM)":112000}}
(2) json字符串反序列化为tree mode
DeserializationExampleTreeModel1.java,请注意观察程序中不同的JsonNode的类型变化
[java] view plain copy
在CODE上查看代码片派生到我的代码片
package com.jackson.json.treemodel;
import java.io.File;
import java.util.Iterator;
import com.fasterxml.jackson.databind.JsonNode;
import com.fasterxml.jackson.databind.ObjectMapper;
public class DeserializationExampleTreeModel1 {
public static void main(String[] args) throws Exception {
ObjectMapper mapper = new ObjectMapper();
// Jackson提供一个树节点被称为"JsonNode",ObjectMapper提供方法来读json作为树的JsonNode根节点
JsonNode node = mapper.readTree(new File("country2.json"));
// 看看根节点的类型
System.out.println("node JsonNodeType:"+node.getNodeType());
// 是不是一个容器
System.out.println("node is container Node ? "+node.isContainerNode());
// 得到所有node节点的子节点名称
System.out.println("---------得到所有node节点的子节点名称-------------------------");
Iterator
while (fieldNames.hasNext()) {
String fieldName = fieldNames.next();
System.out.print(fieldName+" ");
}
System.out.println("\n-----------------------------------------------------");
// as.Text的作用是有值返回值,无值返回空字符串
JsonNode country_id = node.get("country_id");
System.out.println("country_id:"+country_id.asText() + " JsonNodeType:"+country_id.getNodeType());
JsonNode birthDate = node.get("birthDate");
System.out.println("birthDate:"+birthDate.asText()+" JsonNodeType:"+birthDate.getNodeType());
JsonNode nation = node.get("nation");
System.out.println("nation:"+ nation+ " JsonNodeType:"+nation.getNodeType());
JsonNode lakes = node.get("lakes");
System.out.println("lakes:"+lakes+" JsonNodeType:"+lakes.getNodeType());
JsonNode provinces = node.get("provinces");
System.out.println("provinces JsonNodeType:"+provinces.getNodeType());
boolean flag = true;
for (JsonNode provinceElements : provinces) {
//为了避免provinceElements多次打印,用flag控制打印,能体现provinceElements的JsonNodeType就可以了
if(flag){
System.out.println("provinceElements JsonNodeType:"+provinceElements.getNodeType());
System.out.println("provinceElements is container node? "+provinceElements.isContainerNode());
flag = false;
}
Iterator
while (provinceElementFields.hasNext()) {
String fieldName = (String) provinceElementFields.next();
String province;
if ("population".equals(fieldName)) {
province = fieldName + ":" + provinceElements.get(fieldName).asInt();
}else{
province = fieldName + ":" + provinceElements.get(fieldName).asText();
}
System.out.println(province);
}
}
}
}
程序运行后打印结果如下:
[html] view plain copy
在CODE上查看代码片派生到我的代码片
node JsonNodeType:OBJECT
node is container Node ? true
---------得到所有node节点的子节点名称-------------------------
country_id birthDate nation lakes provinces traffic
-----------------------------------------------------
country_id:China JsonNodeType:STRING
birthDate:1949-10-01 JsonNodeType:STRING
nation:["Han","Meng","Hui","WeiWuEr","Zang"] JsonNodeType:ARRAY
lakes:["QingHai Lake","Poyang Lake","Dongting Lake","Taihu Lake"] JsonNodeType:ARRAY
provinces JsonNodeType:ARRAY
provinceElements JsonNodeType:OBJECT
provinceElements is container node? true
name:Shanxi
population:37751200
name:ZheJiang
population:55080000
在来看一下DeserializationExampleTreeModel2.java,本例中使用JsonNode.path的方法,path方法类似于DeserializationExampleTreeModel1.java中使用的get方法,
但当node不存在时,get方法返回null,而path返回MISSING类型的JsonNode
[java] view plain copy
在CODE上查看代码片派生到我的代码片
package com.jackson.json.treemodel;
import java.io.File;
import java.io.IOException;
import java.util.Iterator;
import com.fasterxml.jackson.core.JsonProcessingException;
import com.fasterxml.jackson.databind.JsonNode;
import com.fasterxml.jackson.databind.ObjectMapper;
public class DeserializationExampleTreeModle2 {
public static void main(String[] args) throws JsonProcessingException, IOException{
ObjectMapper mapper = new ObjectMapper();
JsonNode node = mapper.readTree(new File("country2.json"));
//path方法获取JsonNode时,当对象不存在时,返回MISSING类型的JsonNode
JsonNode missingNode = node.path("test");
if(missingNode.isMissingNode()){
System.out.println("JsonNodeType : " + missingNode.getNodeType());
}
System.out.println("country_id:"+node.path("country_id").asText());
JsonNode provinces = node.path("provinces");
for (JsonNode provinceElements : provinces) {
Iterator
while (provincesFields.hasNext()) {
String fieldName = (String) provincesFields.next();
String province;
if("name".equals(fieldName)){
province = fieldName +":"+ provinceElements.path(fieldName).asText();
}else{
province = fieldName +":"+ provinceElements.path(fieldName).asInt();
}
System.out.println(province);
}
}
}
}
程序运行打印结果:
[html] view plain copy
在CODE上查看代码片派生到我的代码片
JsonNodeType : MISSING
country_id:China
name:Shanxi
population:37751200
name:ZheJiang
population:55080000
3.Stream处理Json
(1)stream生成json
[java] view plain copy
在CODE上查看代码片派生到我的代码片
package com.jackson.json.streaming;
import java.io.File;
import java.io.FileWriter;
import java.io.Exception;
import com.fasterxml.jackson.core.JsonFactory;
import com.fasterxml.jackson.core.JsonGenerator;
public class StreamGeneratorJson {
public static void main(String[] args) throws Exception {
JsonFactory factory = new JsonFactory();
//从JsonFactory创建一个JsonGenerator生成器的实例
JsonGenerator generator = factory.createGenerator(new FileWriter(new File("country3.json")));
generator.writeStartObject();
generator.writeFieldName("country_id");
generator.writeString("China");
generator.writeFieldName("provinces");
generator.writeStartArray();
generator.writeStartObject();
generator.writeStringField("name", "Shanxi");
generator.writeNumberField("population", 33750000);
generator.writeEndObject();
generator.writeEndArray();
generator.writeEndObject();
generator.close();
}
}
程序运行后生成country3.json文件内容:
[html] view plain copy
在CODE上查看代码片派生到我的代码片
{"country_id":"China","provinces":[{"name":"Shanxi","population":33750000}]}
(2)stream解析json:
现在adgcountry3.json,我们用Streaming API的方式来解析上面的Json,并查找json中population的值。
[java] view plain copy
在CODE上查看代码片派生到我的代码片
package com.jackson.json.streaming;
import java.io.File;
import java.io.IOException;
import com.fasterxml.jackson.core.JsonFactory;
import com.fasterxml.jackson.core.JsonParseException;
import com.fasterxml.jackson.core.JsonParser;
import com.fasterxml.jackson.core.JsonToken;
/*Jackson API提供了token对每个Json对象,例如,Json开始符号“{”是token指向的第一个解析的对象,
key:value键值对是另一个单独的对象。这个API很强大,但也需要编写大量代码。不推荐使用,平时更多的是使用DataBinding和TreeModel来处理json
*/
public class StreamParserJson {
public static void main(String[] args) throws JsonParseException,
IOException {
JsonFactory factory = new JsonFactory();
// 从JsonFactory创建JsonParser解析器的实例
JsonParser parser = factory.createParser(new File("country3.json"));
while (!parser.isClosed()) {
// 得到一个token,第一次遍历时,token指向json文件中第一个符号"{"
JsonToken token = parser.nextToken();
if (token == null) {
break;
}
// 我们只查找 country3.json中的"population"字段的值,能体现解析的流程就可以了
// 当key是provinces时,我们进入provinces,查找population
if (JsonToken.FIELD_NAME.equals(token)
&& "provinces".equals(parser.getCurrentName())) {
token = parser.nextToken();
if (!JsonToken.START_ARRAY.equals(token)) {
break;
}
// 此时,token指向的应该是"{"
token = parser.nextToken();
if (!JsonToken.START_OBJECT.equals(token)) {
break;
}
while (true) {
token = parser.nextToken();
if (token == null) {
break;
}
if (JsonToken.FIELD_NAME.equals(token)
&& "population".equals(parser.getCurrentName())) {
token = parser.nextToken();
System.out.println(parser.getCurrentName() + " : "
+ parser.getIntValue());
}
}
}
}
}
}
程序运行后,在控制台打印结果如下:
[html] view plain copy
在CODE上查看代码片派生到我的代码片
population : 33750000
总结
上面的例子中,分别用3种方式处理Json,我的体会大致如下:
Stream API方式是开销最低、效率最高,但编写代码复杂度也最高,在生成Json时,需要逐步编写符号和字段拼接json,在解析Json时,需要根据token指向也查找json值,生成和解析json都不是很方便,代码可读性也很低。
Databinding处理Json是最常用的json处理方式,生成json时,创建相关的java对象,并根据json内容结构把java对象组装起来,最后调用writeValue方法即可生成json,
解析时,就更简单了,直接把json映射到相关的java对象,然后就可以遍历java对象来获取值了。
TreeModel处理Json,是以树型结构来生成和解析json,生成json时,根据json内容结构,我们创建不同类型的节点对象,组装这些节点生成json。解析json时,它不需要绑定json到java bean,根据json结构,使用path或get方法轻松查找内容。
学习参考:http://www.cnblogs.com/lee0oo0/articles/2652528.html