- yolov算法详解_yolo 目标检测算法个人总结(yolov1)
CHAO JIANG
yolov算法详解
yolo目标检测算法个人总结目前yolo目标检测有两个版本,分别为v1和v2。因工作需要用yolo算法检测人物,所以这段时间重点看了这两篇论文,并实现了对应的tensorflow代码。这里记录下在论文阅读过程中的一些细节信息,留给自己,同时也希望各位能指出本人理解错误的地方,谢谢!一:yolov1关于yolov1算法的详解在网上已经非常多了,在这里我大概叙述下算法的流程,以及在开发过程中遇到的一些
- YOLOv11革命性升级:基于MobileNetv4的UIB和ExtraDW模块重构C3k2架构,实现移动端推理性能飞跃
博导ai君
深度学习教学-附源码YOLO重构
引言与背景概述在当今人工智能飞速发展的时代,目标检测技术已成为计算机视觉领域的核心技术之一。从自动驾驶汽车到智能安防系统,从移动端AR应用到工业质检,目标检测无处不在。然而,随着应用场景的多样化,特别是移动端和边缘设备的普及,对模型的计算效率提出了更为严苛的要求。YOLO(YouOnlyLookOnce)系列算法作为目标检测领域的领军者,一直在精度与速度之间寻求最佳平衡。从YOLOv1到最新的YO
- 目标检测——YOLOX算法解读
论文:YOLOX:ExceedingYOLOSeriesin2021(2021.7.18)作者:ZhengGe,SongtaoLiu,FengWang,ZemingLi,JianSun链接:https://arxiv.org/abs/2107.08430代码:https://github.com/Megvii-BaseDetection/YOLOXYOLO系列算法解读:YOLOv1通俗易懂版解读、
- 目标检测——YOLO11算法解读
lishanlu136
#目标检测目标检测YOLO11YOLO系列算法解读
作者:Ultralytics公司代码:https://github.com/ultralytics/ultralyticsYOLO系列算法解读:YOLOv1通俗易懂版解读、SSD算法解读、YOLOv2算法解读、YOLOv3算法解读、YOLOv4算法解读、YOLOv5算法解读、YOLOR算法解读、YOLOX算法解读、YOLOv6算法解读、YOLOv7算法解读、
- (二十一)YOLO 全解析:从实时目标检测到多任务视觉智能
只有左边一个小酒窝
深度学习YOLO目标检测人工智能深度学习计算机视觉
1YOLO的发展脉络与技术定位1.1发展脉络YOLOv1(2015年):将目标检测重新定义为单一回归问题,把输入图像划分为S×S网格,每个网格单元负责预测固定数量的边界框及对应的类别概率,直接从像素回归预测物体的边界框坐标和类别概率。但存在小目标检测能力弱、定位精度不足等局限。YOLOv2(2016年):引入批量归一化、锚框、维度集群等技术,还提出了高分辨率分类器、直接位置预测、细粒度特征融合、多
- YOLO的作者们
小远披荆斩棘
YOLOv8v9v10等实验与论文总结YOLO
YOLO之父JesephRedmon,他创建了yolov1、yolov2、yolov3三个版本,但是在2020年2月份却宣布退出CV学术界、停止一切关于计算机视觉的研究、原因是自己的开源算法已经用在军事和隐私问题上,这对他的道德造成了巨大的考验,他拒绝AI算法用于军事和隐私窥探。而在这2个月之后,另一位曾经参与YOLO项目维护的大神AlexeyBochkovskiy,在arXiv上提交了YOLOv
- YOLO chp01-
speop
YOLO
学习YOLO的正确姿势:从入门到"真香"的奇妙之旅YOLO系列模型的硬核表现:YOLOv1最先提出单阶段检测+GridCell机制,在物体检测速度层面实现了质的飞跃YOLOv5在TeslaT4上跑出140FPSYOLOv8的Latency-Accuracy曲线表现卓越YOLO模块化定制;#你的自定义YOLO可能是这样的classMySuperYOLO(nn.Module):def__init__(
- YOLO进化史:从v1到v12的注意力革命 —— 实时检测的“快”与“准”如何兼得?
摘取一颗天上星️
YOLO
⚙️一、初代奠基:打破两阶段检测的垄断(2016-2018)YOLOv1(2016):首次提出“单次检测”范式,将目标检测转化为回归问题。7×7网格+30维向量输出,实现45FPS实时检测,但小目标漏检严重。YOLOv2(2017):引入锚框(AnchorBoxes),通过k-means聚类确定先验框尺寸新增高分辨率微调(448×448输入)使用Darknet-19主干,速度达67FPSYOLOv
- YOLOv2 中非极大值抑制(NMS)机制详解与实现
要努力啊啊啊
计算机视觉YOLO目标跟踪人工智能计算机视觉深度学习
YOLOv2中NMS的详解一、什么是NMS?定义:NMS(非极大值抑制)是一种目标检测中的后处理技术,用于去除重复预测的边界框,保留置信度最高且不重叠的边界框。目标:提高检测结果的准确性;避免同一物体被多次检测;减少误检和冗余框;二、YOLOv1中的NMS实现来源依据:来自YouOnlyLookOnce:Unified,Real-TimeObjectDetection(CVPR2016)输出结构回
- YOLOv1 技术详解:NMS(非极大值抑制)的工作原理与实现细节
要努力啊啊啊
计算机视觉YOLO目标跟踪人工智能计算机视觉深度学习算法
YOLOv1技术详解:NMS(非极大值抑制)的工作原理与实现细节一、前言在目标检测任务中,模型往往会输出多个边界框(boundingbox),其中很多是针对同一物体的重复预测。为了提高检测结果的准确性和简洁性,我们需要使用一种后处理技术来去除这些冗余的预测框——这就是NMS(Non-MaximumSuppression,非极大值抑制)。本文将围绕YOLOv1中的NMS实现机制展开,详细介绍:NMS
- 一文吃透 YOLO 全系列:从 v1 到 v11 的目标检测进化史
程序员小嬛
YOLO目标检测人工智能深度学习
在计算机视觉领域,目标检测堪称技术发展的核心引擎。传统检测方法因处理效率低、精度有限,难以满足自动驾驶、实时监控等场景的严苛需求。而YOLO(YouOnlyLookOnce)系列算法的诞生,彻底颠覆了这一局面——凭借“一次成像即检测”的高效理念,YOLO以实时性和准确性的双重优势,成为行业标杆。本文将深度拆解YOLO从初代v1到最新v11的迭代脉络,解析其核心技术与应用突破。一、YOLOv1:重新
- 【目标检测基础】YOLOv1算法详解:从“一次看全”到实时检测的革命性突破
出不了新手村
ObjectDetection目标检测YOLO算法
1.YOLOv1的诞生背景与意义2016年,JosephRedmon等人提出YOLO(YouOnlyLookOnce)算法,开启了单阶段目标检测的新时代。其革命性体现在:“看一次就够”的直觉:抛弃传统的多阶段流程(候选框生成+分类),将检测任务简化为单次全局推理。实时性突破:在GPU上达到45FPS(FasterR-CNN仅为7FPS),首次让实时视频分析成为可能。端到端思维:直接输入图像输出检测
- YOLOv1 技术详解:正负样本划分与置信度设计
要努力啊啊啊
计算机视觉YOLO目标跟踪人工智能深度学习计算机视觉
YOLOv1技术详解:正负样本划分与置信度设计一、前言YOLOv1是目标检测领域中具有划时代意义的算法之一,它将检测任务统一为一个回归问题,实现了“YouOnlyLookOnce”的端到端实时检测。其中,正负样本的划分机制和置信度(confidence)的设计是理解其训练流程的关键。本文将从以下两个方面深入解析:YOLOv1中的正负样本是如何划分的?置信度(confidence)到底是什么?它的计
- YOLOv1 技术详解:目标检测的实时革命
要努力啊啊啊
计算机视觉YOLO目标检测人工智能深度学习计算机视觉
YOLOv1技术详解:目标检测的实时革命一、前言在目标检测领域,传统方法如R-CNN系列虽然精度高,但存在速度慢、流程复杂的问题。直到2016年,JosephRedmon等人提出YOLO(YouOnlyLookOnce)算法,将目标检测问题转化为一个统一的回归任务,实现了端到端的单阶段实时检测,成为目标检测领域的里程碑之作。本文将深入解析YOLOv1的核心思想、网络结构、预测机制和损失函数设计,帮
- Transformer 架构在目标检测中的应用:YOLO 系列模型解析
水花花花花花
transformer架构目标检测
目录Transformer架构在目标检测中的应用:YOLO系列模型解析一、YOLO模型概述二、YOLO模型的核心架构(一)主干网络(二)颈部结构(三)头部结构三、YOLO模型的工作原理(一)输入图像预处理(二)特征提取与融合(三)边界框预测与类别分类(四)损失函数计算与优化(五)非极大值抑制(NMS)后处理四、YOLO模型的版本演进(一)YOLOv1:开启实时目标检测之门(二)YOLOv2和YOL
- YOLOv2 深度解析:目标检测领域的进阶之路
2201_75491841
人工智能计算机视觉YOLO目标检测
在计算机视觉领域,目标检测一直是研究和应用的热点方向。YOLO(YouOnlyLookOnce)系列算法以其快速高效的特点,在目标检测领域占据了重要地位。YOLOv2作为YOLO系列算法的重要迭代版本,在YOLOv1的基础上进行了诸多改进和优化,大幅提升了检测精度和速度。本文将深入剖析YOLOv2的技术细节,带大家了解这一强大算法的魅力。一、YOLOv2诞生背景YOLOv1虽然开创了单阶段目标检测
- [YOLO专题-4]:YOLO V1 - 网络结构、原理、基本思想的全新、全面、通俗、结构化讲解
文火冰糖的硅基工坊
人工智能-YOLO专题目标检测人工智能YOLO原理思想通俗易懂
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客本文网址:https://blog.csdn.net/HiWangWenBing/article/details/122156426目录第1章YOLOV1应运而生1.1FasterR-CNN的出现与不足1.2YOLOV1的出现1.3YOLOV1的优点1.4YOLO总体的网络结构1.5YOLOV1的总体网络架构
- YOLOv1 目标检测算法深度解析
mozun2020
DL1:深度学习YOLO目标跟踪人工智能计算机视觉目标检测目标识别
YOLOv1目标检测算法深度解析一、算法原理与核心创新1.1端到端检测范式突破YOLOv1彻底颠覆了传统目标检测的"候选框生成+分类"两阶段模式,其核心思想是将目标检测转化为单一回归问题。输入图像经神经网络直接输出边界框坐标(x,y,w,h)和类别概率,实现真正意义上的端到端优化。这种设计使得检测速度相比R-CNN系列提升1000倍,达到45FPS(基础版)和155FPS(快速版)。1.2空间网格
- 基于YOLOv10和深度学习的AR虚拟互动系统:通过摄像头定位用户手势
YOLO实战营
YOLO深度学习ar人工智能分类目标跟踪ui
引言增强现实(AR)技术正在不断改变我们与数字世界的互动方式。与传统的输入设备(如键盘、鼠标)不同,AR系统允许用户通过手势、动作等自然的方式与虚拟世界进行交互。特别是在游戏、医疗、教育和娱乐等领域,手势识别技术成为了互动体验的关键。深度学习与计算机视觉的结合,尤其是目标检测技术,如YOLO(YouOnlyLookOnce)算法,为手势识别和AR交互带来了新的可能性。本文将介绍如何基于YOLOv1
- 涨点神器!基于通道/多头注意力的YOLOv8改进方案(附代码)
博导ai君
深度学习教学-附源码YOLO人工智能
####**1.引言**1.1YOLOv8及其在目标检测中的应用YOLO(YouOnlyLookOnce)系列是目前最受欢迎的目标检测算法之一。自YOLOv1首次提出以来,YOLO系列算法已经经历了多个版本的迭代,其中YOLOv8作为最新版本,继承了YOLO系列算法在实时性和精度上的优势。YOLOv8在性能优化上不断创新,尤其在处理速度和精度之间取得了良好的平衡,使其在许多实时目标检测任务中广泛应
- YOLO系列模型简介
西北风^_^
大模型YOLO
YOLO(YouOnlyLookOnce)系列模型是用于目标检测的一组深度学习模型,以其快速且高效的特点著称。该系列模型由JosephRedmon等人开发,自2016年的YOLOv1发布以来,已经经历了多个版本的迭代和发展,包括YOLOv2、YOLOv3、YOLOv4、YOLOv5、YOLOv6、YOLOv7及最新的YOLOv8等。每个版本都在前一代的基础上进行了改进和优化,提升了模型的速度和准确
- YOLOv11检测模型数据集介绍、模型训练及测试
张小生180
YOLO
下载yolo系列集成的库:pipinstallultralytics-ihttps://pypi.tuna.tsinghua.edu.cn/simple(ultralytics可以指定版本号,像yolov8只与部分版本适配,yolov11因为是才出来不久直接下载即可)YOLOv11指导官方文档:https://docs.ultralytics.com/zh/models/yolo11/YOLOv1
- YOLOv2训练详细实践指南
LIUDAN'S WORLD
YOLO系列教程YOLO目标检测
1.YOLOv2架构与原理详解1.1核心改进点YOLOv2相比YOLOv1的主要改进:采用Darknet-19作为backbone(相比VGG更高效)引入BatchNormalization提高稳定性与收敛速度使用anchorboxes机制代替直接预测边界框引入维度聚类确定anchorboxes尺寸使用passthrough层融合高分辨率特征支持多尺度训练适应不同输入尺寸采用新的分类树结构支持更多
- Yolo系列之Yolo v1概述及网络结构理解
是十一月末
YOLO人工智能pythonyoloyolov1
Yolov1概述及网络结构理解目录Yolov1概述及网络结构理解Yolov1概述概念核心思想评价指标MAPIOUmAP50mAP50-95优缺点网络框架核心网络框架边界框关键设计思想损失函数Yolov1概述概念YOLOv1(YouOnlyLookOnceVersion1)是YOLO系列的第一个版本,由JosephRedmon等人在2016年提出。YOLOv1的核心思想是将目标检测问题转化为一个回归
- YOLOv12模型详解及代码复现
清风AI
深度学习算法详解及代码复现计算机视觉YOLO人工智能机器学习神经网络python算法
算法背景在计算机视觉领域不断发展壮大的背景下,YOLOv12算法应运而生。这一突破性成果源自JosephRedmon和AliFarhadi等研究人员在华盛顿大学的开创性工作。他们的目标是解决实时物体检测这一关键问题,在速度和精度之间寻求最佳平衡。YOLOv12延续了前作YOLOv1的成功理念,将其定位为一种回归问题,而非传统的区域提议+分类方法。这种创新方法不仅简化了整个检测过程,还显著提高了处理
- YOLO系列模型从v1到v10的演进
剑走偏锋o.O
YOLO目标跟踪人工智能
文章目录引言YOLOv1:开创单阶段目标检测先河发布时间与背景核心创新模型架构训练策略与优化YOLOv2:提升精度与速度的平衡发布时间与背景核心创新模型架构训练策略与优化YOLOv3:多尺度检测与残差连接发布时间与背景核心创新模型架构训练策略与优化YOLOv4:引入注意力机制与优化模块发布时间与背景核心创新模型架构训练策略与优化YOLOv5:工程优化与实际应用的结合发布时间与背景核心创新模型架构训
- 《 YOLOv5、YOLOv8、YOLO11训练的关键文件:data.yaml文件编写全解》
空云风语
人工智能YOLO机器视觉目标跟踪人工智能计算机视觉YOLO
走进YOLOv5、YOLOv8、YOLO11的data.yaml在计算机视觉领域的广袤星空中,目标检测无疑是一颗璀璨的明星,它广泛应用于自动驾驶、智能安防、工业检测、医疗影像分析等众多关键领域,发挥着不可或缺的作用。而YOLO系列算法,更是以其独特的“一次看全(YouOnlyLookOnce)”理念和卓越的性能,在目标检测领域中独树一帜,成为了众多研究者和开发者的首选工具。从最初的YOLOv1横空
- 【深度学习目标检测|YOLO算法5-1-1】YOLO家族进化史:从YOLOv1到YOLOv11的架构创新、性能优化与行业应用全解析...
985小水博一枚呀
论文解读深度学习目标检测YOLO人工智能算法架构网络
【深度学习目标检测|YOLO算法5-1-1】YOLO家族进化史:从YOLOv1到YOLOv11的架构创新、性能优化与行业应用全解析…【深度学习目标检测|YOLO算法5-1-1】YOLO家族进化史:从YOLOv1到YOLOv11的架构创新、性能优化与行业应用全解析…文章目录【深度学习目标检测|YOLO算法5-1-1】YOLO家族进化史:从YOLOv1到YOLOv11的架构创新、性能优化与行业应用全解
- YOLOv8到YOLOv11:深度解析目标检测架构的演进
金外飞176
技术前沿目标跟踪人工智能计算机视觉目标检测YOLO神经网络深度学习
YOLOv8到YOLOv11:深度解析目标检测架构的演进在计算机视觉领域,YOLO(YouOnlyLookOnce)系列模型一直是实时目标检测领域的佼佼者。从2015年的YOLOv1到2024年的YOLOv11,这一系列模型经历了快速的迭代和发展,不断刷新着目标检测的性能和效率。然而,由于部分YOLO版本缺乏详细的学术论文和架构图,研究人员和开发者在理解这些模型的工作原理时往往面临挑战。最近,一篇
- YOLO系列版本迭代:从YOLOv1到YOLOv11的技术演进
金外飞176
技术前沿目标跟踪人工智能计算机视觉
YOLO系列版本迭代:从YOLOv1到YOLOv11的技术演进YOLO(YouOnlyLookOnce)系列目标检测算法自2016年首次发布以来,凭借其高效的实时检测能力,迅速成为计算机视觉领域的热门研究方向之一。本文将详细回顾YOLO系列从v1到v11的版本迭代过程,分析每个版本的技术改进、性能提升以及应用场景。1.YOLOv1:开创性的单阶段检测算法YOLOv1是目标检测领域的一个重要里程碑,
- 数据采集高并发的架构应用
3golden
.net
问题的出发点:
最近公司为了发展需要,要扩大对用户的信息采集,每个用户的采集量估计约2W。如果用户量增加的话,将会大量照成采集量成3W倍的增长,但是又要满足日常业务需要,特别是指令要及时得到响应的频率次数远大于预期。
&n
- 不停止 MySQL 服务增加从库的两种方式
brotherlamp
linuxlinux视频linux资料linux教程linux自学
现在生产环境MySQL数据库是一主一从,由于业务量访问不断增大,故再增加一台从库。前提是不能影响线上业务使用,也就是说不能重启MySQL服务,为了避免出现其他情况,选择在网站访问量低峰期时间段操作。
一般在线增加从库有两种方式,一种是通过mysqldump备份主库,恢复到从库,mysqldump是逻辑备份,数据量大时,备份速度会很慢,锁表的时间也会很长。另一种是通过xtrabacku
- Quartz——SimpleTrigger触发器
eksliang
SimpleTriggerTriggerUtilsquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208166 一.概述
SimpleTrigger触发器,当且仅需触发一次或者以固定时间间隔周期触发执行;
二.SimpleTrigger的构造函数
SimpleTrigger(String name, String group):通过该构造函数指定Trigger所属组和名称;
Simpl
- Informatica应用(1)
18289753290
sqlworkflowlookup组件Informatica
1.如果要在workflow中调用shell脚本有一个command组件,在里面设置shell的路径;调度wf可以右键出现schedule,现在用的是HP的tidal调度wf的执行。
2.designer里面的router类似于SSIS中的broadcast(多播组件);Reset_Workflow_Var:参数重置 (比如说我这个参数初始是1在workflow跑得过程中变成了3我要在结束时还要
- python 获取图片验证码中文字
酷的飞上天空
python
根据现成的开源项目 http://code.google.com/p/pytesser/改写
在window上用easy_install安装不上 看了下源码发现代码很少 于是就想自己改写一下
添加支持网络图片的直接解析
#coding:utf-8
#import sys
#reload(sys)
#sys.s
- AJAX
永夜-极光
Ajax
1.AJAX功能:动态更新页面,减少流量消耗,减轻服务器负担
2.代码结构:
<html>
<head>
<script type="text/javascript">
function loadXMLDoc()
{
.... AJAX script goes here ...
- 创业OR读研
随便小屋
创业
现在研一,有种想创业的想法,不知道该不该去实施。因为对于的我情况这两者是矛盾的,可能就是鱼与熊掌不能兼得。
研一的生活刚刚过去两个月,我们学校主要的是
- 需求做得好与坏直接关系着程序员生活质量
aijuans
IT 生活
这个故事还得从去年换工作的事情说起,由于自己不太喜欢第一家公司的环境我选择了换一份工作。去年九月份我入职现在的这家公司,专门从事金融业内软件的开发。十一月份我们整个项目组前往北京做现场开发,从此苦逼的日子开始了。
系统背景:五月份就有同事前往甲方了解需求一直到6月份,后续几个月也完
- 如何定义和区分高级软件开发工程师
aoyouzi
在软件开发领域,高级开发工程师通常是指那些编写代码超过 3 年的人。这些人可能会被放到领导的位置,但经常会产生非常糟糕的结果。Matt Briggs 是一名高级开发工程师兼 Scrum 管理员。他认为,单纯使用年限来划分开发人员存在问题,两个同样具有 10 年开发经验的开发人员可能大不相同。近日,他发表了一篇博文,根据开发者所能发挥的作用划分软件开发工程师的成长阶段。
初
- Servlet的请求与响应
百合不是茶
servletget提交java处理post提交
Servlet是tomcat中的一个重要组成,也是负责客户端和服务端的中介
1,Http的请求方式(get ,post);
客户端的请求一般都会都是Servlet来接受的,在接收之前怎么来确定是那种方式提交的,以及如何反馈,Servlet中有相应的方法, http的get方式 servlet就是都doGet(
- web.xml配置详解之listener
bijian1013
javaweb.xmllistener
一.定义
<listener>
<listen-class>com.myapp.MyListener</listen-class>
</listener>
二.作用 该元素用来注册一个监听器类。可以收到事件什么时候发生以及用什么作为响
- Web页面性能优化(yahoo技术)
Bill_chen
JavaScriptAjaxWebcssYahoo
1.尽可能的减少HTTP请求数 content
2.使用CDN server
3.添加Expires头(或者 Cache-control) server
4.Gzip 组件 server
5.把CSS样式放在页面的上方。 css
6.将脚本放在底部(包括内联的) javascript
7.避免在CSS中使用Expressions css
8.将javascript和css独立成外部文
- 【MongoDB学习笔记八】MongoDB游标、分页查询、查询结果排序
bit1129
mongodb
游标
游标,简单的说就是一个查询结果的指针。游标作为数据库的一个对象,使用它是包括
声明
打开
循环抓去一定数目的文档直到结果集中的所有文档已经抓取完
关闭游标
游标的基本用法,类似于JDBC的ResultSet(hasNext判断是否抓去完,next移动游标到下一条文档),在获取一个文档集时,可以提供一个类似JDBC的FetchSize
- ORA-12514 TNS 监听程序当前无法识别连接描述符中请求服务 的解决方法
白糖_
ORA-12514
今天通过Oracle SQL*Plus连接远端服务器的时候提示“监听程序当前无法识别连接描述符中请求服务”,遂在网上找到了解决方案:
①打开Oracle服务器安装目录\NETWORK\ADMIN\listener.ora文件,你会看到如下信息:
# listener.ora Network Configuration File: D:\database\Oracle\net
- Eclipse 问题 A resource exists with a different case
bozch
eclipse
在使用Eclipse进行开发的时候,出现了如下的问题:
Description Resource Path Location TypeThe project was not built due to "A resource exists with a different case: '/SeenTaoImp_zhV2/bin/seentao'.&
- 编程之美-小飞的电梯调度算法
bylijinnan
编程之美
public class AptElevator {
/**
* 编程之美 小飞 电梯调度算法
* 在繁忙的时间,每次电梯从一层往上走时,我们只允许电梯停在其中的某一层。
* 所有乘客都从一楼上电梯,到达某层楼后,电梯听下来,所有乘客再从这里爬楼梯到自己的目的层。
* 在一楼时,每个乘客选择自己的目的层,电梯则自动计算出应停的楼层。
* 问:电梯停在哪
- SQL注入相关概念
chenbowen00
sqlWeb安全
SQL Injection:就是通过把SQL命令插入到Web表单递交或输入域名或页面请求的查询字符串,最终达到欺骗服务器执行恶意的SQL命令。
具体来说,它是利用现有应用程序,将(恶意)的SQL命令注入到后台数据库引擎执行的能力,它可以通过在Web表单中输入(恶意)SQL语句得到一个存在安全漏洞的网站上的数据库,而不是按照设计者意图去执行SQL语句。
首先让我们了解什么时候可能发生SQ
- [光与电]光子信号战防御原理
comsci
原理
无论是在战场上,还是在后方,敌人都有可能用光子信号对人体进行控制和攻击,那么采取什么样的防御方法,最简单,最有效呢?
我们这里有几个山寨的办法,可能有些作用,大家如果有兴趣可以去实验一下
根据光
- oracle 11g新特性:Pending Statistics
daizj
oracledbms_stats
oracle 11g新特性:Pending Statistics 转
从11g开始,表与索引的统计信息收集完毕后,可以选择收集的统信息立即发布,也可以选择使新收集的统计信息处于pending状态,待确定处于pending状态的统计信息是安全的,再使处于pending状态的统计信息发布,这样就会避免一些因为收集统计信息立即发布而导致SQL执行计划走错的灾难。
在 11g 之前的版本中,D
- 快速理解RequireJs
dengkane
jqueryrequirejs
RequireJs已经流行很久了,我们在项目中也打算使用它。它提供了以下功能:
声明不同js文件之间的依赖
可以按需、并行、延时载入js库
可以让我们的代码以模块化的方式组织
初看起来并不复杂。 在html中引入requirejs
在HTML中,添加这样的 <script> 标签:
<script src="/path/to
- C语言学习四流程控制if条件选择、for循环和强制类型转换
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i, j;
scanf("%d %d", &i, &j);
if (i > j)
printf("i大于j\n");
else
printf("i小于j\n");
retu
- dictionary的使用要注意
dcj3sjt126com
IO
NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:
user.user_id , @"id",
user.username , @"username",
- Android 中的资源访问(Resource)
finally_m
xmlandroidStringdrawablecolor
简单的说,Android中的资源是指非代码部分。例如,在我们的Android程序中要使用一些图片来设置界面,要使用一些音频文件来设置铃声,要使用一些动画来显示特效,要使用一些字符串来显示提示信息。那么,这些图片、音频、动画和字符串等叫做Android中的资源文件。
在Eclipse创建的工程中,我们可以看到res和assets两个文件夹,是用来保存资源文件的,在assets中保存的一般是原生
- Spring使用Cache、整合Ehcache
234390216
springcacheehcache@Cacheable
Spring使用Cache
从3.1开始,Spring引入了对Cache的支持。其使用方法和原理都类似于Spring对事务管理的支持。Spring Cache是作用在方法上的,其核心思想是这样的:当我们在调用一个缓存方法时会把该方法参数和返回结果作为一个键值对存放在缓存中,等到下次利用同样的
- 当druid遇上oracle blob(clob)
jackyrong
oracle
http://blog.csdn.net/renfufei/article/details/44887371
众所周知,Oracle有很多坑, 所以才有了去IOE。
在使用Druid做数据库连接池后,其实偶尔也会碰到小坑,这就是使用开源项目所必须去填平的。【如果使用不开源的产品,那就不是坑,而是陷阱了,你都不知道怎么去填坑】
用Druid连接池,通过JDBC往Oracle数据库的
- easyui datagrid pagination获得分页页码、总页数等信息
ldzyz007
var grid = $('#datagrid');
var options = grid.datagrid('getPager').data("pagination").options;
var curr = options.pageNumber;
var total = options.total;
var max =
- 浅析awk里的数组
nigelzeng
二维数组array数组awk
awk绝对是文本处理中的神器,它本身也是一门编程语言,还有许多功能本人没有使用到。这篇文章就单单针对awk里的数组来进行讨论,如何利用数组来帮助完成文本分析。
有这么一组数据:
abcd,91#31#2012-12-31 11:24:00
case_a,136#19#2012-12-31 11:24:00
case_a,136#23#2012-12-31 1
- 搭建 CentOS 6 服务器(6) - TigerVNC
rensanning
centos
安装GNOME桌面环境
# yum groupinstall "X Window System" "Desktop"
安装TigerVNC
# yum -y install tigervnc-server tigervnc
启动VNC服务
# /etc/init.d/vncserver restart
# vncser
- Spring 数据库连接整理
tomcat_oracle
springbeanjdbc
1、数据库连接jdbc.properties配置详解 jdbc.url=jdbc:hsqldb:hsql://localhost/xdb jdbc.username=sa jdbc.password= jdbc.driver=不同的数据库厂商驱动,此处不一一列举 接下来,详细配置代码如下:
Spring连接池  
- Dom4J解析使用xpath java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
xp9802
用Dom4J解析xml,以前没注意,今天使用dom4j包解析xml时在xpath使用处报错
异常栈:java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
导入包 jaxen-1.1-beta-6.jar 解决;
&nb