酒店预订分析

Hotel Booking Analysis

目的:从我们拥有的数据集中创建有意义的估计量,并通过将它们与不同的ML模型和ROC曲线的准确性得分进行比较,来选择预测性能最好的模型。

1- EDA

2- Preprocessing

3- Models and ROC Curve Comparison

  • Logistic Regression
  • Gaussian Naive Bayes
  • Support Vector Classification
  • Decision Tree Model
  • Random Forest
  • Model Tuning for Random Forest
  • XGBoost
  • Neural Network
  • Model Tuning for Neural Network
import numpy as np
import pandas as pd
import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.metrics import accuracy_score, roc_auc_score, roc_curve, confusion_matrix, auc
from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV
from sklearn.preprocessing import LabelEncoder, StandardScaler 

from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import RandomForestClassifier
from xgboost import XGBClassifier
from sklearn.neural_network import MLPClassifier

from warnings import filterwarnings
filterwarnings('ignore')
df = pd.read_csv("../kaggle/hotel_bookings.csv")
df.head()
hotel is_canceled lead_time arrival_date_year arrival_date_month arrival_date_week_number arrival_date_day_of_month stays_in_weekend_nights stays_in_week_nights adults ... deposit_type agent company days_in_waiting_list customer_type adr required_car_parking_spaces total_of_special_requests reservation_status reservation_status_date
0 Resort Hotel 0 342 2015 July 27 1 0 0 2 ... No Deposit NaN NaN 0 Transient 0.0 0 0 Check-Out 2015-07-01
1 Resort Hotel 0 737 2015 July 27 1 0 0 2 ... No Deposit NaN NaN 0 Transient 0.0 0 0 Check-Out 2015-07-01
2 Resort Hotel 0 7 2015 July 27 1 0 1 1 ... No Deposit NaN NaN 0 Transient 75.0 0 0 Check-Out 2015-07-02
3 Resort Hotel 0 13 2015 July 27 1 0 1 1 ... No Deposit 304.0 NaN 0 Transient 75.0 0 0 Check-Out 2015-07-02
4 Resort Hotel 0 14 2015 July 27 1 0 2 2 ... No Deposit 240.0 NaN 0 Transient 98.0 0 1 Check-Out 2015-07-03

5 rows × 32 columns

df.shape
(119390, 32)
print("# of NaN in each columns:", df.isnull().sum(), sep='\n')
# of NaN in each columns:
hotel                                  0
is_canceled                            0
lead_time                              0
arrival_date_year                      0
arrival_date_month                     0
arrival_date_week_number               0
arrival_date_day_of_month              0
stays_in_weekend_nights                0
stays_in_week_nights                   0
adults                                 0
children                               4
babies                                 0
meal                                   0
country                              488
market_segment                         0
distribution_channel                   0
is_repeated_guest                      0
previous_cancellations                 0
previous_bookings_not_canceled         0
reserved_room_type                     0
assigned_room_type                     0
booking_changes                        0
deposit_type                           0
agent                              16340
company                           112593
days_in_waiting_list                   0
customer_type                          0
adr                                    0
required_car_parking_spaces            0
total_of_special_requests              0
reservation_status                     0
reservation_status_date                0
dtype: int64
# It is better to copy original dataset, it can be needed in some cases.
data = df.copy()

1. EDA

条件分布:在新老顾客中的订单中,订单取消的数量如下,可以发现老顾客没有人取消订单,但是新顾客中有一部分人取消订单。

sns.set(style = "darkgrid")
ax = sns.countplot(x = "is_canceled", hue = 'is_repeated_guest', data = data)
plt.title("Canceled or not", fontdict = {'fontsize': 20})
plt.show()

酒店预订分析_第1张图片
重复入住的客人不会取消预订也就不足为奇了。 当然也有一些例外。 同样,大多数顾客不是回头客。

按细分市场和酒店类型划分的酒店住宿之夜的箱形图分布

plt.figure(figsize = (15,10))
sns.boxplot(x = "market_segment", y = "stays_in_week_nights", data = data, hue = "hotel", palette = 'Set1');

酒店预订分析_第2张图片

plt.figure(figsize=(15,10))
sns.boxplot(x = "market_segment", y = "stays_in_weekend_nights", data = data, hue = "hotel", palette = 'Set1')
plt.show()

酒店预订分析_第3张图片
航空部门(Aviation)的客户似乎没有住在度假酒店,而且日均消费水平相对较低。除此之外,周末和工作日的平均值大致相等。航空部门的客户可能会因业务原因很快到达。也可能大多数机场都离大海有点远,而且最可能离城市酒店更近。

显然,当人们去度假酒店时,他们更喜欢住宿。

市场细分的计数图分布

sns.set(style = "darkgrid")
plt.figure(figsize = (13,10))
ax = sns.countplot(x = "market_segment", hue = 'deposit_type', data = data)
plt.title("Countplot Distrubiton of Segment by Deposit Type", fontdict = {'fontsize':20})
plt.show()

酒店预订分析_第4张图片

plt.figure(figsize = (13,10))
sns.set(style = "darkgrid")
plt.title("Countplot Distributon of Segments by Cancellation", fontdict = {'fontsize':20})
ax = sns.countplot(x = "market_segment", hue = 'is_canceled', data = data)
plt.show()

酒店预订分析_第5张图片

取消的提前天数密度曲线

(sns.FacetGrid(data, hue = 'is_canceled',
             height = 6,
             xlim = (0,500))
    .map(sns.kdeplot, 'lead_time', shade = True)
    .add_legend());
plt.show()

酒店预订分析_第6张图片

每月取消和按酒店类型划分的客户

plt.figure(figsize =(13,10))
sns.set(style="darkgrid")
plt.title("Total Customers - Monthly ", fontdict={'fontsize': 20})
ax = sns.countplot(x = "arrival_date_month", hue = 'hotel', data = data)

酒店预订分析_第7张图片

关于图像的解释:Seaborn会对’color’列中的数值进行归类后按照estimator参数的方法(默认为平均值)计算相应的值,计算出来的值就作为条形图所显示的值(条形图上的误差棒则表示各类的数值相对于条形图所显示的值的误差

plt.figure(figsize =(13,10))
sns.barplot(x = 'arrival_date_month', y = 'is_canceled', data = data)
plt.show()

酒店预订分析_第8张图片

plt.figure(figsize = (20,10))
sns.barplot(x = 'arrival_date_month', y = 'is_canceled', hue = 'hotel', data = data)
plt.show()

酒店预订分析_第9张图片

预处理

缺失值,特征工程和标准化

print("# of NaN in each columns:", df.isnull().sum(), sep='\n')
# of NaN in each columns:
hotel                                  0
is_canceled                            0
lead_time                              0
arrival_date_year                      0
arrival_date_month                     0
arrival_date_week_number               0
arrival_date_day_of_month              0
stays_in_weekend_nights                0
stays_in_week_nights                   0
adults                                 0
children                               4
babies                                 0
meal                                   0
country                              488
market_segment                         0
distribution_channel                   0
is_repeated_guest                      0
previous_cancellations                 0
previous_bookings_not_canceled         0
reserved_room_type                     0
assigned_room_type                     0
booking_changes                        0
deposit_type                           0
agent                              16340
company                           112593
days_in_waiting_list                   0
customer_type                          0
adr                                    0
required_car_parking_spaces            0
total_of_special_requests              0
reservation_status                     0
reservation_status_date                0
dtype: int64

缺失比例计算

def perc_mv(x, y):
    perc = y.isnull().sum() / len(x) * 100
    return perc

print('Missing value ratios:\nCompany: {}\nAgent: {}\nCountry: {}'.format(perc_mv(df, df['company']),
                                                                                   perc_mv(df, df['agent']),
                                                                                   perc_mv(df, df['country'])))
Missing value ratios:
Company: 94.30689337465449
Agent: 13.686238378423655
Country: 0.40874445095904177
data["agent"].value_counts().count()
333

我们可以看到94.3%的公司名缺少值。 因此选择删除公司那一列。

代理列的13.68%缺少值,无需删除代理栏。 但是我们也不应该删除行,因为13.68%的数据确实是巨大的数据,并且这些行有机会获得重要的信息。 有333个唯一代理,因为代理太多,可能无法预测。
NA值也可以是当前333个代理中未列出的代理。 我们无法预测代理,并且由于缺失值占所有数据的13%,因此我们也无法删除它们。 相关部分之后,我将决定如何处理代理。

如果我们在“国家/地区”列中删除缺少值的行,那将不是问题。 不过,我将等待相关性。

# company is dropped
data = data.drop(['company'], axis = 1)
# We have also 4 missing values in children column. If there is no information about children, In my opinion those customers do not have any children.
data['children'] = data['children'].fillna(0)

处理特征

我们应该检查特征以创建一些更有意义的变量,并尽可能减少特征数量。

data.dtypes
hotel                              object
is_canceled                         int64
lead_time                           int64
arrival_date_year                   int64
arrival_date_month                 object
arrival_date_week_number            int64
arrival_date_day_of_month           int64
stays_in_weekend_nights             int64
stays_in_week_nights                int64
adults                              int64
children                          float64
babies                              int64
meal                               object
country                            object
market_segment                     object
distribution_channel               object
is_repeated_guest                   int64
previous_cancellations              int64
previous_bookings_not_canceled      int64
reserved_room_type                 object
assigned_room_type                 object
booking_changes                     int64
deposit_type                       object
agent                             float64
days_in_waiting_list                int64
customer_type                      object
adr                               float64
required_car_parking_spaces         int64
total_of_special_requests           int64
reservation_status                 object
reservation_status_date            object
dtype: object
# I wanted to label them manually. I will do the rest with get.dummies or label_encoder.
data['hotel'] = data['hotel'].map({'Resort Hotel':0, 'City Hotel':1})

data['arrival_date_month'] = data['arrival_date_month'].map({'January':1, 'February': 2, 'March':3, 'April':4, 'May':5, 'June':6, 'July':7,
                                                            'August':8, 'September':9, 'October':10, 'November':11, 'December':12})

上述代码将字符串赋值成字数字。

def family(data):
    if ((data['adults'] > 0) & (data['children'] > 0)):
        val = 1
    elif ((data['adults'] > 0) & (data['babies'] > 0)):
        val = 1
    else:
        val = 0
    return val

def deposit(data):
    if ((data['deposit_type'] == 'No Deposit') | (data['deposit_type'] == 'Refundable')):
        return 0
    else:
        return 1
def feature(data):
    data["is_family"] = data.apply(family, axis = 1)
    data["total_customer"] = data["adults"] + data["children"] + data["babies"]
    data["deposit_given"] = data.apply(deposit, axis=1)
    data["total_nights"] = data["stays_in_weekend_nights"]+ data["stays_in_week_nights"]
    return data

data = feature(data)

上述处理:data[“is_family”]将三列处理成了一列0、1变量,当成年人带上儿童或者婴儿即为1,否则为0;data[“total_customer”]计算为成年人+儿童+婴儿的总人数;data[“deposit_given”]将data[‘deposit_type’]列处理成0、1变量;data[“total_nights”]计算一共住了多少晚上。

完成一些变量处理后,则需要删除用过的变量

data = data.drop(columns = ['adults', 'babies', 'children', 'deposit_type', 'reservation_status_date'])

Correlation,考察相关关系

data.columns
Index(['hotel', 'is_canceled', 'lead_time', 'arrival_date_year',
       'arrival_date_month', 'arrival_date_week_number',
       'arrival_date_day_of_month', 'stays_in_weekend_nights',
       'stays_in_week_nights', 'meal', 'country', 'market_segment',
       'distribution_channel', 'is_repeated_guest', 'previous_cancellations',
       'previous_bookings_not_canceled', 'reserved_room_type',
       'assigned_room_type', 'booking_changes', 'agent',
       'days_in_waiting_list', 'customer_type', 'adr',
       'required_car_parking_spaces', 'total_of_special_requests',
       'reservation_status', 'is_family', 'total_customer', 'deposit_given',
       'total_nights'],
      dtype='object')
cor_data = data.copy()

复制数据来得出相关系数,不会改变后面建模所用的数据data。

le = LabelEncoder()
cor_data['meal'] = le.fit_transform(cor_data['meal'])
cor_data['distribution_channel'] = le.fit_transform(cor_data['distribution_channel'])
cor_data['reserved_room_type'] = le.fit_transform(cor_data['reserved_room_type'])
cor_data['assigned_room_type'] = le.fit_transform(cor_data['assigned_room_type'])
cor_data['agent'] = le.fit_transform(cor_data['agent'])
cor_data['customer_type'] = le.fit_transform(cor_data['customer_type'])
cor_data['reservation_status'] = le.fit_transform(cor_data['reservation_status'])
cor_data['market_segment'] = le.fit_transform(cor_data['market_segment'])
cor_data.corr()
hotel is_canceled lead_time arrival_date_year arrival_date_month arrival_date_week_number arrival_date_day_of_month stays_in_weekend_nights stays_in_week_nights meal ... days_in_waiting_list customer_type adr required_car_parking_spaces total_of_special_requests reservation_status is_family total_customer deposit_given total_nights
hotel 1.000000 0.136531 0.075381 0.035267 0.001817 0.001270 -0.001862 -0.186596 -0.234020 0.008018 ... 0.072432 0.047531 0.096719 -0.218873 -0.043390 -0.124331 -0.058306 -0.040821 0.172003 -0.247479
is_canceled 0.136531 1.000000 0.293123 0.016660 0.011022 0.008148 -0.006130 -0.001791 0.024765 -0.017678 ... 0.054186 -0.068140 0.047557 -0.195498 -0.234658 -0.917196 -0.013010 0.046522 0.481457 0.017779
lead_time 0.075381 0.293123 1.000000 0.040142 0.131424 0.126871 0.002268 0.085671 0.165799 0.000349 ... 0.170084 0.073403 -0.063077 -0.116451 -0.095712 -0.302175 -0.043972 0.072265 0.380179 0.157167
arrival_date_year 0.035267 0.016660 0.040142 1.000000 -0.527739 -0.540561 -0.000221 0.021497 0.030883 0.065840 ... -0.056497 -0.006149 0.197580 -0.013684 0.108531 -0.017683 0.052711 0.052127 -0.065963 0.031438
arrival_date_month 0.001817 0.011022 0.131424 -0.527739 1.000000 0.995105 -0.026063 0.018440 0.019212 -0.015205 ... 0.019045 -0.029753 0.079315 0.000257 0.028026 -0.021090 0.010427 0.027252 0.008746 0.021536
arrival_date_week_number 0.001270 0.008148 0.126871 -0.540561 0.995105 1.000000 0.066809 0.018208 0.015558 -0.017381 ... 0.022933 -0.028432 0.075791 0.001920 0.026149 -0.017387 0.010611 0.025220 0.007773 0.018719
arrival_date_day_of_month -0.001862 -0.006130 0.002268 -0.000221 -0.026063 0.066809 1.000000 -0.016354 -0.028174 -0.007086 ... 0.022728 0.012188 0.030245 0.008683 0.003062 0.011460 0.014710 0.006742 -0.008616 -0.027408
stays_in_weekend_nights -0.186596 -0.001791 0.085671 0.021497 0.018440 0.018208 -0.016354 1.000000 0.498969 0.045744 ... -0.054151 -0.109220 0.049342 -0.018554 0.072671 0.008558 0.052306 0.101426 -0.114275 0.762790
stays_in_week_nights -0.234020 0.024765 0.165799 0.030883 0.019212 0.015558 -0.028174 0.498969 1.000000 0.036742 ... -0.002020 -0.127223 0.065237 -0.024859 0.068192 -0.021607 0.050424 0.101665 -0.079999 0.941005
meal 0.008018 -0.017678 0.000349 0.065840 -0.015205 -0.017381 -0.007086 0.045744 0.036742 1.000000 ... -0.007132 0.044658 0.059098 -0.038923 0.023136 0.015393 -0.041727 -0.005975 -0.090725 0.045277
market_segment 0.083795 0.059338 0.013797 0.107697 0.001293 -0.000510 -0.004088 0.115350 0.108569 0.145132 ... -0.041503 -0.165814 0.232763 -0.062226 0.274373 -0.061584 0.080450 0.213221 -0.183880 0.126052
distribution_channel 0.174419 0.167600 0.220414 0.022644 0.007381 0.005699 0.001578 0.093097 0.087185 0.116957 ... 0.048642 -0.069640 0.092396 -0.132280 0.098815 -0.171330 0.000464 0.144357 0.102548 0.101407
is_repeated_guest -0.050421 -0.084793 -0.124410 0.010341 -0.030729 -0.030131 -0.006145 -0.087239 -0.097245 -0.057009 ... -0.022235 -0.017111 -0.134314 0.077090 0.013050 0.083504 -0.035127 -0.136748 -0.058423 -0.106626
previous_cancellations -0.012292 0.110133 0.086042 -0.119822 0.037479 0.035501 -0.027011 -0.012775 -0.013992 -0.003772 ... 0.005929 -0.008188 -0.065646 -0.018492 -0.048384 -0.110758 -0.027262 -0.020058 0.143314 -0.015429
previous_bookings_not_canceled -0.004441 -0.057358 -0.073548 0.029218 -0.021640 -0.020904 -0.000300 -0.042715 -0.048743 -0.040417 ... -0.009397 -0.012259 -0.072144 0.047653 0.037824 0.055051 -0.022815 -0.099097 -0.031509 -0.053049
reserved_room_type -0.249677 -0.061282 -0.106089 0.092809 -0.007923 -0.007997 0.016929 0.142083 0.168616 -0.120749 ... -0.068821 -0.120978 0.392060 0.131583 0.137466 0.058693 0.323910 0.383357 -0.201348 0.181296
assigned_room_type -0.307834 -0.176028 -0.172219 0.036141 -0.006378 -0.005684 0.011646 0.086643 0.100795 -0.120792 ... -0.068676 -0.084427 0.258134 0.160131 0.124683 0.172537 0.292940 0.302422 -0.246602 0.109042
booking_changes -0.072820 -0.144381 0.000149 0.030872 0.004809 0.005508 0.010613 0.063281 0.096209 0.024650 ... -0.011634 0.092029 0.019618 0.065620 0.052833 0.140799 0.079121 -0.003173 -0.119333 0.096498
agent -0.158500 -0.127883 -0.171430 -0.017723 -0.000799 0.001638 -0.002271 -0.110284 -0.110354 -0.095428 ... -0.039667 0.066095 -0.126407 0.113648 -0.085429 0.123264 -0.032656 -0.155423 -0.013898 -0.125406
days_in_waiting_list 0.072432 0.054186 0.170084 -0.056497 0.019045 0.022933 0.022728 -0.054151 -0.002020 -0.007132 ... 1.000000 0.099121 -0.040756 -0.030600 -0.082730 -0.057927 -0.036312 -0.026431 0.120249 -0.022652
customer_type 0.047531 -0.068140 0.073403 -0.006149 -0.029753 -0.028432 0.012188 -0.109220 -0.127223 0.044658 ... 0.099121 1.000000 -0.077155 -0.030060 -0.135624 0.066004 -0.060139 -0.113232 -0.086745 -0.137577
adr 0.096719 0.047557 -0.063077 0.197580 0.079315 0.075791 0.030245 0.049342 0.065237 0.059098 ... -0.040756 -0.077155 1.000000 0.056628 0.172185 -0.050520 0.309360 0.368105 -0.087608 0.067945
required_car_parking_spaces -0.218873 -0.195498 -0.116451 -0.013684 0.000257 0.001920 0.008683 -0.018554 -0.024859 -0.038923 ... -0.030600 -0.030060 0.056628 1.000000 0.082626 0.179310 0.069141 0.047934 -0.094982 -0.025794
total_of_special_requests -0.043390 -0.234658 -0.095712 0.108531 0.028026 0.026149 0.003062 0.072671 0.068192 0.023136 ... -0.082730 -0.135624 0.172185 0.082626 1.000000 0.225674 0.128205 0.156834 -0.268034 0.079259
reservation_status -0.124331 -0.917196 -0.302175 -0.017683 -0.021090 -0.017387 0.011460 0.008558 -0.021607 0.015393 ... -0.057927 0.066004 -0.050520 0.179310 0.225674 1.000000 0.013117 -0.055273 -0.478747 -0.012781
is_family -0.058306 -0.013010 -0.043972 0.052711 0.010427 0.010611 0.014710 0.052306 0.050424 -0.041727 ... -0.036312 -0.060139 0.309360 0.069141 0.128205 0.013117 1.000000 0.579899 -0.106643 0.058049
total_customer -0.040821 0.046522 0.072265 0.052127 0.027252 0.025220 0.006742 0.101426 0.101665 -0.005975 ... -0.026431 -0.113232 0.368105 0.047934 0.156834 -0.055273 0.579899 1.000000 -0.080676 0.115463
deposit_given 0.172003 0.481457 0.380179 -0.065963 0.008746 0.007773 -0.008616 -0.114275 -0.079999 -0.090725 ... 0.120249 -0.086745 -0.087608 -0.094982 -0.268034 -0.478747 -0.106643 -0.080676 1.000000 -0.104314
total_nights -0.247479 0.017779 0.157167 0.031438 0.021536 0.018719 -0.027408 0.762790 0.941005 0.045277 ... -0.022652 -0.137577 0.067945 -0.025794 0.079259 -0.012781 0.058049 0.115463 -0.104314 1.000000

29 rows × 29 columns

cor_data.corr()['stays_in_week_nights']
hotel                            -0.234020
is_canceled                       0.024765
lead_time                         0.165799
arrival_date_year                 0.030883
arrival_date_month                0.019212
arrival_date_week_number          0.015558
arrival_date_day_of_month        -0.028174
stays_in_weekend_nights           0.498969
stays_in_week_nights              1.000000
meal                              0.036742
market_segment                    0.108569
distribution_channel              0.087185
is_repeated_guest                -0.097245
previous_cancellations           -0.013992
previous_bookings_not_canceled   -0.048743
reserved_room_type                0.168616
assigned_room_type                0.100795
booking_changes                   0.096209
agent                            -0.110354
days_in_waiting_list             -0.002020
customer_type                    -0.127223
adr                               0.065237
required_car_parking_spaces      -0.024859
total_of_special_requests         0.068192
reservation_status               -0.021607
is_family                         0.050424
total_customer                    0.101665
deposit_given                    -0.079999
total_nights                      0.941005
Name: stays_in_week_nights, dtype: float64

删除一些列:

cor_data = cor_data.drop(columns = ['total_nights', 'arrival_date_week_number', 'stays_in_weekend_nights', 'arrival_date_month', 'agent'], axis = 1)

删除空值的行:

indices = cor_data.loc[pd.isna(cor_data["country"]), :].index 
cor_data = cor_data.drop(cor_data.index[indices])   
cor_data.isnull().sum()
hotel                             0
is_canceled                       0
lead_time                         0
arrival_date_year                 0
arrival_date_day_of_month         0
stays_in_week_nights              0
meal                              0
country                           0
market_segment                    0
distribution_channel              0
is_repeated_guest                 0
previous_cancellations            0
previous_bookings_not_canceled    0
reserved_room_type                0
assigned_room_type                0
booking_changes                   0
days_in_waiting_list              0
customer_type                     0
adr                               0
required_car_parking_spaces       0
total_of_special_requests         0
reservation_status                0
is_family                         0
total_customer                    0
deposit_given                     0
dtype: int64

删除空值的行和一些列:

indices = data.loc[pd.isna(data["country"]), :].index 
data = data.drop(data.index[indices])   
data = data.drop(columns = ['arrival_date_week_number', 'stays_in_weekend_nights', 'arrival_date_month', 'agent'], axis = 1)
data.columns
Index(['hotel', 'is_canceled', 'lead_time', 'arrival_date_year',
       'arrival_date_day_of_month', 'stays_in_week_nights', 'meal', 'country',
       'market_segment', 'distribution_channel', 'is_repeated_guest',
       'previous_cancellations', 'previous_bookings_not_canceled',
       'reserved_room_type', 'assigned_room_type', 'booking_changes',
       'days_in_waiting_list', 'customer_type', 'adr',
       'required_car_parking_spaces', 'total_of_special_requests',
       'reservation_status', 'is_family', 'total_customer', 'deposit_given',
       'total_nights'],
      dtype='object')
df1 = data.copy()

将分类变量处理成虚拟变量:

#one-hot-encoding
df1 = pd.get_dummies(data = df1, columns = ['meal', 
'market_segment', 'distribution_channel',
'reserved_room_type', 'assigned_room_type',
 'customer_type', 'reservation_status'])
df1['country'] = le.fit_transform(df1['country']) 

le.fit_transform:参考博客:le.fit_transform
,也是将字符变量处理成数字变量

Decision Tree Model (reservation_status included)

y = df1["is_canceled"]
X = df1.drop(["is_canceled"], axis=1)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.30, random_state = 42)
cart = DecisionTreeClassifier(max_depth = 12)
cart_model = cart.fit(X_train, y_train)
y_pred = cart_model.predict(X_test)
print('Decision Tree Model')

print('Accuracy Score: {}\n\nConfusion Matrix:\n {}\n\nAUC Score: {}'
      .format(accuracy_score(y_test,y_pred), confusion_matrix(y_test,y_pred), roc_auc_score(y_test,y_pred)))
Decision Tree Model
Accuracy Score: 1.0

Confusion Matrix:
 [[22353     0]
 [    0 13318]]

AUC Score: 1.0

准确率100%

pd.DataFrame(data = cart_model.feature_importances_*100,
                   columns = ["Importances"],
                   index = X_train.columns).sort_values("Importances", ascending = False)[:20].plot(kind = "barh", color = "r")

plt.xlabel("Feature Importances (%)")
plt.show()

酒店预订分析_第10张图片
在分析相关系数时,我们已经看到了预订状态对因变量的影响比较大。建模时保留这个变量会完全主导其他变量。 如将reservation_status保留在数据中,有可能达到100%的准确率。为了分析起见,将删除Reservation_status并继续分析。

比较模型之前的最终安排

df2 = df1.drop(columns = ['reservation_status_Canceled', 'reservation_status_Check-Out', 'reservation_status_No-Show'], axis = 1)

这三个变量是由reservation_status处理成虚拟变量生成的,所以要删除不能只删除reservation_status_Check-Out,而应该全部删除。

y = df2["is_canceled"]
X = df2.drop(["is_canceled"], axis=1)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.30, random_state = 42)

定义模型和评价模型的函数、图像等:

def model(algorithm, X_train, X_test, y_train, y_test):
    alg = algorithm
    alg_model = alg.fit(X_train, y_train)
    global y_prob, y_pred
    y_prob = alg.predict_proba(X_test)[:,1]
    y_pred = alg_model.predict(X_test)

    print('Accuracy Score: {}\n\nConfusion Matrix:\n {}'
      .format(accuracy_score(y_test,y_pred), confusion_matrix(y_test,y_pred)))
    

def ROC(y_test, y_prob):
    
    false_positive_rate, true_positive_rate, threshold = roc_curve(y_test, y_prob)
    roc_auc = auc(false_positive_rate, true_positive_rate)
    
    plt.figure(figsize = (10,10))
    plt.title('Receiver Operating Characteristic')
    plt.plot(false_positive_rate, true_positive_rate, color = 'red', label = 'AUC = %0.2f' % roc_auc)
    plt.legend(loc = 'lower right')
    plt.plot([0, 1], [0, 1], linestyle = '--')
    plt.axis('tight')
    plt.ylabel('True Positive Rate')
    plt.xlabel('False Positive Rate')
    plt.show()

sklearn中predict_proba用法(注意和predict的区别)

Model and ROC Curve Comparison

Logistic Regression Model

print('Model: Logistic Regression\n')
model(LogisticRegression(solver = "liblinear"), X_train, X_test, y_train, y_test)
Model: Logistic Regression

Accuracy Score: 0.8038742956463233

Confusion Matrix:
 [[20486  1867]
 [ 5129  8189]]

cross_val_score:交叉验证

LogR = LogisticRegression(solver = "liblinear")
cv_scores = cross_val_score(LogR, X, y, cv = 8, scoring = 'accuracy')
print('Mean Score of CV: ', cv_scores.mean())
Mean Score of CV:  0.7701217519101682
ROC(y_test, y_prob)

酒店预订分析_第11张图片

Gaussian Naive Bayes Model

print('Model: Gaussian Naive Bayes\n')
model(GaussianNB(), X_train, X_test, y_train, y_test)
Model: Gaussian Naive Bayes

Accuracy Score: 0.586246530795324

Confusion Matrix:
 [[ 9604 12749]
 [ 2010 11308]]
NB = GaussianNB()
cv_scores = cross_val_score(NB, X, y, cv = 8, scoring = 'accuracy')
print('Mean Score of CV: ', cv_scores.mean())
Mean Score of CV:  0.5624280984012298
ROC(y_test, y_prob)

酒店预订分析_第12张图片

Support Vector Classification Model

print('Model: SVC\n')

def model1(algorithm, X_train, X_test, y_train, y_test):
    alg = algorithm
    alg_model = alg.fit(X_train, y_train)
    global y_pred
    y_pred = alg_model.predict(X_test)
    
    print('Accuracy Score: {}\n\nConfusion Matrix:\n {}'
      .format(accuracy_score(y_test,y_pred), confusion_matrix(y_test,y_pred)))
    
model1(SVC(kernel = 'linear'), X_train, X_test, y_train, y_test)

Decision Tree Model

print('Model: Decision Tree\n')
model(DecisionTreeClassifier(max_depth = 12), X_train, X_test, y_train, y_test)
DTC = DecisionTreeClassifier(max_depth = 12)
cv_scores = cross_val_score(DTC, X, y, cv = 8, scoring = 'accuracy')
print('Mean Score of CV: ', cv_scores.mean())
Mean Score of CV:  0.6725617115938002
ROC(y_test, y_prob)

酒店预订分析_第13张图片

Random Forest

print('Model: Random Forest\n')
model(RandomForestClassifier(), X_train, X_test, y_train, y_test)
Model: Random Forest

Accuracy Score: 0.8835748927700373

Confusion Matrix:
 [[20946  1407]
 [ 2746 10572]]
RFC = RandomForestClassifier()
cv_scores = cross_val_score(RFC, X, y, cv = 8, scoring = 'accuracy')
print('Mean Score of CV: ', cv_scores.mean())
Mean Score of CV:  0.6697106885103477
ROC(y_test, y_prob)

酒店预订分析_第14张图片

Random Forest Model Tuning

rf_parameters = {"max_depth": [10,13],
                 "n_estimators": [10,100,500],
                 "min_samples_split": [2,5]}
rf_model = RandomForestClassifier()
rf_cv_model = GridSearchCV(rf_model,
                           rf_parameters,
                           cv = 10,
                           n_jobs = -1,
                           verbose = 2)

rf_cv_model.fit(X_train, y_train)
Fitting 10 folds for each of 12 candidates, totalling 120 fits


[Parallel(n_jobs=-1)]: Using backend LokyBackend with 4 concurrent workers.
[Parallel(n_jobs=-1)]: Done  33 tasks      | elapsed:  2.5min
[Parallel(n_jobs=-1)]: Done 120 out of 120 | elapsed: 12.5min finished





GridSearchCV(cv=10, error_score=nan,
             estimator=RandomForestClassifier(bootstrap=True, ccp_alpha=0.0,
                                              class_weight=None,
                                              criterion='gini', max_depth=None,
                                              max_features='auto',
                                              max_leaf_nodes=None,
                                              max_samples=None,
                                              min_impurity_decrease=0.0,
                                              min_impurity_split=None,
                                              min_samples_leaf=1,
                                              min_samples_split=2,
                                              min_weight_fraction_leaf=0.0,
                                              n_estimators=100, n_jobs=None,
                                              oob_score=False,
                                              random_state=None, verbose=0,
                                              warm_start=False),
             iid='deprecated', n_jobs=-1,
             param_grid={'max_depth': [10, 13], 'min_samples_split': [2, 5],
                         'n_estimators': [10, 100, 500]},
             pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
             scoring=None, verbose=2)
print('Best parameters: ' + str(rf_cv_model.best_params_))
Best parameters: {'max_depth': 13, 'min_samples_split': 2, 'n_estimators': 500}
rf_tuned = RandomForestClassifier(max_depth = 13,
                                  min_samples_split = 2,
                                  n_estimators = 500)

print('Model: Random Forest Tuned\n')
model(rf_tuned, X_train, X_test, y_train, y_test)
Model: Random Forest Tuned

Accuracy Score: 0.8515320568529057

Confusion Matrix:
 [[21151  1202]
 [ 4094  9224]]

调整后的模型的准确性得分比默认模型差。 在默认模型中,最大深度没有限制。 最大深度的增加为我们提供了更好的准确性得分,但可能会降低泛化性。

XGBoost Model

print('Model: XGBoost\n')
model(XGBClassifier(), X_train, X_test, y_train, y_test)
Model: XGBoost

Accuracy Score: 0.8696980740657677

Confusion Matrix:
 [[20570  1783]
 [ 2865 10453]]
XGB = XGBClassifier()
cv_scores = cross_val_score(XGB, X, y, cv = 8, scoring = 'accuracy')
print('Mean Score of CV: ', cv_scores.mean())
Mean Score of CV:  0.651031688035794
ROC(y_test, y_prob)

酒店预订分析_第15张图片

Neural Network Model

scaler = StandardScaler()
scaler.fit(X_train)
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)
print('Model: Neural Network\n')
model(MLPClassifier(), X_train_scaled, X_test_scaled, y_train, y_test)
Model: Neural Network

Accuracy Score: 0.8486445572033304

Confusion Matrix:
 [[20212  2141]
 [ 3258 10060]]
ROC(y_test, y_prob)

酒店预订分析_第16张图片

Neural Network Model Tuning

mlpc_parameters = {"alpha": [1, 0.1, 0.01, 0.001],
                   "hidden_layer_sizes": [(50,50,50),
                                          (100,100)],
                   "solver": ["adam", "sgd"],
                   "activation": ["logistic", "relu"]}
mlpc = MLPClassifier()
mlpc_cv_model = GridSearchCV(mlpc, mlpc_parameters,
                             cv = 10,
                             n_jobs = -1,
                             verbose = 2)

mlpc_cv_model.fit(X_train_scaled, y_train)
Fitting 10 folds for each of 32 candidates, totalling 320 fits


[Parallel(n_jobs=-1)]: Using backend LokyBackend with 4 concurrent workers.
[Parallel(n_jobs=-1)]: Done  33 tasks      | elapsed: 13.5min
[Parallel(n_jobs=-1)]: Done 154 tasks      | elapsed: 123.4min
[Parallel(n_jobs=-1)]: Done 320 out of 320 | elapsed: 290.8min finished





GridSearchCV(cv=10, error_score=nan,
             estimator=MLPClassifier(activation='relu', alpha=0.0001,
                                     batch_size='auto', beta_1=0.9,
                                     beta_2=0.999, early_stopping=False,
                                     epsilon=1e-08, hidden_layer_sizes=(100,),
                                     learning_rate='constant',
                                     learning_rate_init=0.001, max_fun=15000,
                                     max_iter=200, momentum=0.9,
                                     n_iter_no_change=10,
                                     nesterovs_momentum=True, power_t=0.5,
                                     random_state=None, shuffle=True,
                                     solver='adam', tol=0.0001,
                                     validation_fraction=0.1, verbose=False,
                                     warm_start=False),
             iid='deprecated', n_jobs=-1,
             param_grid={'activation': ['logistic', 'relu'],
                         'alpha': [1, 0.1, 0.01, 0.001],
                         'hidden_layer_sizes': [(50, 50, 50), (100, 100)],
                         'solver': ['adam', 'sgd']},
             pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
             scoring=None, verbose=2)
print('Best parameters: ' + str(mlpc_cv_model.best_params_))
Best parameters: {'activation': 'relu', 'alpha': 0.1, 'hidden_layer_sizes': (100, 100), 'solver': 'adam'}
mlpc_tuned = MLPClassifier(activation = 'relu',
                           alpha = 0.1,
                           hidden_layer_sizes = (100,100),
                           solver = 'adam')
print('Model: Neural Network Tuned\n')
model(mlpc_tuned, X_train_scaled, X_test_scaled, y_train, y_test)
Model: Neural Network Tuned

Accuracy Score: 0.859409604440582

Confusion Matrix:
 [[20464  1889]
 [ 3126 10192]]
ROC(y_test, y_prob)

酒店预订分析_第17张图片

Conclusion

Feature Importances

randomf = RandomForestClassifier()
rf_model1 = randomf.fit(X_train, y_train)

pd.DataFrame(data = rf_model1.feature_importances_*100,
                   columns = ["Importances"],
                   index = X_train.columns).sort_values("Importances", ascending = False)[:15].plot(kind = "barh", color = "r")

plt.xlabel("Feature Importances (%)")
Text(0.5, 0, 'Feature Importances (%)')

酒店预订分析_第18张图片

Summary Table of the Models

table = pd.DataFrame({"Model": ["Decision Tree (reservation status included)", "Logistic Regression",
                                "Naive Bayes", "Support Vector", "Decision Tree", "Random Forest",
                                "Random Forest Tuned", "XGBoost", "Neural Network", "Neural Network Tuned"],
                     "Accuracy Scores": ["1", "0.804", "0.582", "0.794", "0.846",
                                         "0.883", "0.851", "0.869", "0.848", "0.859"],
                     "ROC | Auc": ["1", "0.88", "0.78", "0",
                                   "0.92", "0.95", "0", "0.94",
                                   "0.93", "0.94"]})


table["Model"] = table["Model"].astype("category")
table["Accuracy Scores"] = table["Accuracy Scores"].astype("float32")
table["ROC | Auc"] = table["ROC | Auc"].astype("float32")

pd.pivot_table(table, index = ["Model"]).sort_values(by = 'Accuracy Scores', ascending=False)

pandas 透视表

Accuracy Scores ROC | Auc
Model
Decision Tree (reservation status included) 1.000 1.00
Random Forest 0.883 0.95
XGBoost 0.869 0.94
Neural Network Tuned 0.859 0.94
Random Forest Tuned 0.851 0.00
Neural Network 0.848 0.93
Decision Tree 0.846 0.92
Logistic Regression 0.804 0.88
Support Vector 0.794 0.00
Naive Bayes 0.582 0.78

你可能感兴趣的:(机器学习)