- 为什么转行大模型行业?深度解析职业变革与技术红利
大模型入门教程
大模型学习语言模型人工智能AI大模型程序员大模型入门
引言2023年ChatGPT的爆发式发展,标志着AI大模型技术正式进入大众视野。这一技术不仅重塑了人工智能的边界,更催生了全新的职业赛道。从传统算法工程师到互联网从业者,越来越多的人开始将目光投向大模型领域。本文将深入探讨这一现象背后的核心动因,并结合行业现状、技术趋势与职业发展路径,为从业者提供系统性分析。一、行业变革:传统岗位萎缩与大模型崛起传统技术岗位的困境以推荐算法为例,随着移动互联网流量
- python 基于混合式推荐算法的学术论文投稿系统
mosquito_lover1
python知识图谱
基于混合式推荐算法的学术论文投稿系统是一个结合多种推荐技术(如基于内容的推荐、协同过滤、知识图谱等)来为研究者推荐合适期刊或会议投稿的系统。以下是实现该系统的关键步骤和Python代码示例。系统设计思路1.数据收集与预处理:-收集论文数据(标题、摘要、关键词、作者信息等)。-收集期刊/会议数据(领域、主题、影响因子、投稿要求等)。-对文本数据进行预处理(分词、去停用词、向量化等)。2.推荐算法设计
- 算法在各领域的广泛应用:100 个实例全解析
软件职业规划
AI&模型算法
一、互联网与信息技术领域搜索引擎算法:如谷歌的PageRank算法,用于根据网页的重要性和相关性对搜索结果进行排序,帮助用户快速找到所需信息。推荐系统算法:例如亚马逊和Netflix使用的协同过滤算法。根据用户的历史行为(购买、观看记录等)和其他相似用户的偏好,为用户推荐可能感兴趣的产品或内容。社交网络分析算法:用于分析社交网络中的用户关系,如Facebook通过算法发现用户的好友推荐、社区划分等
- 搜广推校招面经四十四
Y1nhl
搜广推面经python机器学习人工智能pytorch开发语言
快手主站推荐算法一、因果里面前门准则是什么(Front-DoorCriterion)前门准则是因果推断中的一个重要概念,用于在存在未观测混杂因素的情况下识别因果效应。它由朱迪亚·珀尔(JudeaPearl)提出,是后门准则的补充。1.1.定义前门准则适用于以下情况:存在一个中介变量MMM,它完全介导了处理变量XXX对结果变量YYY的因果效应。处理变量XXX和结果变量YYY之间存在未观测的混杂因素U
- Python构建基于协同过滤的推荐系统:从理论到实践
清水白石008
pythonPython题库python开发语言
构建基于协同过滤的推荐系统:从理论到实践推荐系统在现代应用中无处不在,从电商平台的商品推荐到流媒体服务的内容推荐,推荐系统极大地提升了用户体验。本文将详细介绍如何使用Python构建一个基于协同过滤算法的推荐系统,内容涵盖理论基础、数据处理、算法实现以及实际应用。一、推荐系统概述推荐系统主要分为三类:基于内容的推荐、基于协同过滤的推荐和混合推荐系统。本文重点介绍基于协同过滤的推荐系统。协同过滤(C
- 搜广推校招面经三十八
Y1nhl
搜广推面经算法pytorch推荐算法搜索算法机器学习
字节推荐算法一、场景题:在抖音场景下为用户推荐广告词,吸引用户点击搜索,呈现广告这一流程的关键点以及可能遇到的困难。二、Transformer中对梯度消失或者梯度爆炸的处理在Transformer模型中,梯度消失和梯度爆炸是深度学习中常见的问题,尤其是在处理长序列数据时。为了克服这些问题,Transformer采用了一系列技术:2.1.残差连接(ResidualConnections)每个子层(包
- Django 中的算法应用与实现
岱宗夫up
教学sqlite数据库pythondjangoopencv
Django中的算法应用与实现在Django开发中,算法的应用可以极大地扩展Web应用的功能和性能。从简单的数据处理到复杂的机器学习模型,Django都可以作为一个强大的后端框架来支持这些算法的实现。本文将介绍几种常见的算法及其在Django中的使用方法。1\.协同过滤算法1.1算法简介协同过滤是一种常用的推荐系统算法,通过分析用户的行为数据(如评分、浏览历史等),为用户推荐他们可能感兴趣的内容。
- 搜广推校招面经三十六
Y1nhl
搜广推面经机器学习人工智能算法python深度学习pytorch推荐算法
快手推荐算法一、有10亿个数据量如何快速做召回在推荐系统的召回阶段,面对海量数据(如10亿条记录),需要快速筛选出与目标用户相关的候选物品集合。由于数据规模巨大,直接对所有数据进行计算是不现实的,因此需要设计高效的召回策略。1.1.核心挑战数据规模大:10亿级别的数据无法直接加载到内存中。实时性要求高:召回过程通常需要在毫秒级完成。稀疏性问题:用户行为数据通常是稀疏的,导致相似性计算复杂度增加。多
- 搜广推校招面经二十八
Y1nhl
搜广推面经推荐算法求职招聘搜索引擎机器学习算法
蚂蚁推荐算法一、介绍损失函数、为什么分类和回归的损失函数不能共用损失函数的介绍见【搜广推校招面经十八】1.1.分类和回归损失函数不能共用的原因分类和回归任务的目标不同,因此它们的损失函数设计也存在本质区别:输出空间的不同回归任务:目标是预测一个连续值(如房价、温度等)。输出空间是连续的实数范围。分类任务:目标是预测离散的类别标签(如“猫”或“狗”)或者概率。输出空间通常是有限的类别集合。误差衡量方
- 推荐算法工程师的技术图谱和学习路径
执于代码
开发者职业加速服务推荐算法学习算法
推荐算法工程师的技术图谱和学习路径可以从多个维度进行概述,可以总结如下:一、技术图谱推荐算法工程师需要掌握的技术栈主要分为以下几个方面:数学基础:微积分、线性代数、概率论与统计学是推荐算法的基础,用于理解模型的数学原理和优化算法。高等数学、最优化理论、几何和图论等知识对于复杂模型的设计和优化至关重要。编程与数据结构:熟练掌握Python、Java等编程语言,具备良好的编程习惯和代码优化能力。掌握数
- 融合多源高校画像数据与协同过滤算法的高考择校推荐系统[Java]—计算机毕业设计源码+LW文档
qq_375279829
高考javaspringbootjavascriptvue.jsspring
摘要随着信息技术的飞速发展和教育数据的日益丰富,高考择校推荐系统已成为帮助学生和家长做出明智选择的重要工具。本文介绍了一种基于SpringBoot的融合多源高校画像数据与协同过滤算法的高考择校推荐系统。该系统通过整合高校的多源画像数据,如地理位置、学科实力、师资力量、就业情况等,结合协同过滤算法,为学生提供个性化的高校推荐。本文详细阐述了系统的设计与实现过程,包括技术选型、需求分析、系统设计、功能
- mysql数据推荐算法_Mahout推荐算法基础
爱看书的小兔纸
mysql数据推荐算法
转载自(http://www.geek521.com/?p=1423)Mahout推荐算法分为以下几大类GenericUserBasedRecommender算法:1.基于用户的相似度2.相近的用户定义与数量特点:1.易于理解2.用户数较少时计算速度快GenericItemBasedRecommender算法:1.基于item的相似度特点:1.item较少时就算速度更快2.当item的外部概念易于
- python 推荐算法库_[译] 详解个性化推荐五大最常用算法
weixin_39612733
python推荐算法库
允中若朴编译自Stats&Bots量子位出品|公众号QbitAI推荐系统,是当今互联网背后的无名英雄。我们在某宝首页看见的商品,某条上读到的新闻,甚至在各种地方看见的广告,都有赖于它。昨天,一个名为Stats&Bots的博客详解了构建推荐系统的五种方法。量子位编译如下:现在,许多公司都在用大数据来向用户进行相关推荐,驱动收入增长。推荐算法有很多种,数据科学家需要根据业务的限制和要求选择最好的算法。
- python爬虫项目(一百九十八):电商平台用户行为数据分析与推荐系统、爬取电商平台用户行为数据
人工智能_SYBH
爬虫试读2025年爬虫百篇实战宝典:从入门到精通python爬虫数据分析开发语言信息可视化okhttp
在现代电商平台中,用户的行为数据对于优化用户体验、提升销量以及个性化推荐至关重要。通过抓取和分析用户的浏览、点击、购买等行为数据,电商平台能够更好地了解用户的偏好,从而推荐相关产品,增加用户的黏性和购买意愿。本篇博客将详细介绍如何通过爬虫技术抓取电商平台的用户行为数据,并结合数据分析和推荐算法,构建一个简单的推荐系统。目录一、电商平台用户行为数据二、爬虫技术实现2.1网站分析2.2使用Seleni
- 数据挖掘与数据分析
「已注销」
数据分析数据挖掘数据分析人工智能
目录数据挖掘与数据分析一.数据的本质二.什么是数据挖掘和数据分析三.数据挖掘和数据分析有什么区别案例及应用1.基于分类模型的案例2.基于预测模型的案例3.基于关联分析的案例4.基于聚类分析的案例5.基于异常值分析的案例6.基于协同过滤的案例7.基于社会网络分析的案例8.基于文本分析的案例结语数据挖掘与数据分析在当今数字化的时代,数据成为了我们生活和工作中不可或缺的一部分。数据的价值在于其所蕴含的信
- spark1.x和spark2.x的区别
xuxu1116
sparkspark1.x与2.x的区别
spark2.x版本相对于1.x版本,有挺多地方的修改,1Spark2ApacheSpark作为编译器:增加新的引擎Tungsten执行引擎,比Spark1快10倍2ml做了很大的改进,支持协同过滤http://spark.apache.org/docs/latest/ml-collaborative-filtering.html3spark2org.apache.spark.sql加了Spark
- 微信小程序 python PHP java nodejs物业管理系统azs8s
豆包程序员
微信小程序pythonphp
文章目录本项目支持的技术栈具体实现截图开发技术介绍可定制亮点创新点->协同过滤算法进度安排及各阶段主要任务技术路线或研究方法可定制亮点创新点->普通算法推荐可定制亮点创新点->最短路线推荐算法可定制亮点创新点->标签算法java类核心代码部分展示参考文献源码获取/详细视频演示本项目支持的技术栈微信小程序前端开发:运用微信开发者工具,设计简洁美观、交互友好的界面。实现页面布局、组件设计、用户交互效果
- 基于ThinkPHP 5~8兼容的推荐算法类实现,
极梦网络无忧
自建推荐算法算法机器学习
在现代推荐系统中,随着用户量和物品量的增长,传统的推荐算法可能会面临性能瓶颈。本文将介绍如何基于ThinkPHP实现一个高性能的推荐系统,结合显性反馈(如兴趣选择)、隐性反馈(如观看时长、评论、点赞、搜索等)、行为序列分析和关键词拆分(支持中文)等功能,并通过优化方案支持大规模用户场景。目录推荐系统简介数据库设计推荐算法类的实现优化方案总结与扩展推荐系统简介推荐系统的目标是根据用户的历史行为,预测
- 搜广推校招面经十九
Y1nhl
搜广推面经搜索引擎推荐算法python求职招聘
快手推荐算法一、1*1的cnn有什么作用?1.1.降维与通道数调整(ChannelReduction)在CNN中,特征图(FeatureMap)通常有多个通道(channels)。1×1卷积可以用于减少通道数,从而降低计算量,提高模型效率。1×1卷积可以增加通道数,以增强特征表达能力。示例代码(PyTorch):importtorchimporttorch.nnasnnconv1x1=nn.Con
- 推荐系统Day2笔记
『₣λ¥√≈üĐ』
机器学习人工智能
协同过滤(CollaborativeFiltering)推荐算法是最经典、最常用的推荐算法。基本思想是:根据用户之前的喜好以及其他兴趣相近的用户的选择来给用户推荐物品。基于对用户历史行为数据的挖掘发现用户的喜好偏向,并预测用户可能喜好的产品进行推荐。一般是仅仅基于用户的行为数据(评价、购买、下载等),而不依赖于项的任何附加信息(物品自身特征)或者用户的任何附加信息(年龄,性别等)。目前应用比较广泛
- ”人货场”模型搞懂没?数据分析大部分场景都能用!
接地气的陈老师
人工智能数据分析大数据机器学习推荐系统
做数据分析的同学,很多都听过:人、货、场的分析模型。然而,这东西又是个只闻其名,不见真身的东西。到底该怎么结合实际分析?今天我们系统讲解下。问题场景:某生鲜电商,用户复购率较低,60%的用户在30天内无二次购买行为,运营领导非常着急,要求通过数据分析提升复购率,请问你作为数据分析师该怎么做?建立人工智能精准推荐算法(40%概率用协同过滤,60%用关联分析)把过往6个月月初复购率做成折线图,然后写下
- 数据可视化+SpringBoot+协同过滤推荐算法的美食点餐管理平台
qq_1249870753
课程设计美食springboot毕业设计
感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,我会一一回复的,希望帮助到更多的人。背景分析在当今数字化浪潮席卷全球的时代,餐饮行业也正经历着深刻的变革,智慧点餐系统作为这场变革中的关键一环,其诞生和发展有着极为深远的背景意义。从宏观市场环境来看,随着全球经济的快速发展,餐饮行业呈现出蓬勃的发展态势。据相关数据统计,过去十年间,全球餐饮市场规模以每年[X]
- 人工智能之推荐系统实战系列(协同过滤,矩阵分解,FM与DeepFM算法)
weixin_58351028
人工智能深度学习神经网络算法机器学习
一.推荐系统介绍和应用(1)推荐系统通俗解读推荐系统就是来了就别想走了。例如在大数据时代中京东越买越想买,抖音越刷越是自己喜欢的东西,微博越刷越过瘾。(2).推荐系统发展简介1)推荐系统无处不在,它是根据用户的行为决定推荐的内容。用户每天在互联网中都会留下足迹,这样就会越来越多的用户画像。2)为什么要推荐系统卖的好的商品就那几种,其它就不管了吗?答案是否定的。80%的销售来自20%的热门商品,要想
- 深度学习 视频推荐
小赖同学啊
人工智能深度学习音视频人工智能
以下为你呈现一个基于深度学习实现视频推荐的简化代码示例。这里我们使用的是协同过滤思想结合神经网络的方式,借助TensorFlow和Keras库来构建模型。在这个示例中,假设已有用户对视频的评分数据,目标是预测用户对未评分视频的评分,进而为用户推荐可能感兴趣的视频。1.环境准备要确保你已经安装了必要的库,如numpy、pandas、tensorflow等,可以使用以下命令进行安装:pipinstal
- 基于联邦学习的政务大数据平台应用研究
宋罗世家技术屋
计算机软件及理论发展专栏政务大数据
摘要当前数字政府建设已进入深水区,政务大数据平台作为数据底座支撑各类政务信息化应用,其隐私数据的安全性和合规性一直被业界广泛关注。联邦学习是一类解决数据孤岛的重要方法,基于联邦学习的政务一体化大数据平台应用具有较高的研究价值。首先,介绍政务大数据平台及联邦学习应用现状;然后,分析政务大数据平台面临的隐私数据的采集、分类分级、共享三大管理挑战;接着,阐述基于联邦学习的推荐算法和隐私集合求交技术的解决
- 【旅游管理与推荐系统】Python+Django网页界面平台+协同过滤推荐算法+管理系统
网站开发
一、介绍旅游管理与推荐系统。本系统使用Python作为主要编程语言,前端采用HTML、CSS、BootStrap等技术实现界面展示平台的开发,后端使用Django框架处理用户响应请求,并使用Ajax等技术实现前后端的数据通信。本系统主要功能有:系统分为两个角色:用户和管理员对于用户角色可以进行登录、注册、查看旅游景点信息、点赞、收藏、购买景点门票、发布评论、对景点进行评分、查看个人订单、查看个人收
- ✅毕业设计:python商品推荐系统+协同过滤推荐算法+网络爬虫 2种推荐算法 计算机毕业设计 大数据(附源码)✅
vx_biyesheji0004
biyesheji0001biyesheji0005biyesheji0004课程设计python推荐算法大数据毕业设计爬虫商品推荐系统
博主介绍:✌全网粉丝10W+,前互联网大厂软件研发、集结硕博英豪成立工作室。专注于计算机相关专业项目实战6年之久,选择我们就是选择放心、选择安心毕业✌>想要获取完整文章或者源码,或者代做,拉到文章底部即可与我联系了。点击查看作者主页,了解更多项目!感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助同学们顺利毕业。1、毕业设计:2025年
- Spark图书数据分析系统 Springboot协同过滤-余弦函数推荐系统 爬虫1万+数据 大屏数据展示 + [手把手视频教程 和 开发文档]
QQ-1305637939
毕业设计大数据毕设图书数据分析sparkspringboot爬虫
Spark图书数据分析系统Springboot协同过滤-余弦函数推荐系统爬虫1万+数据大屏数据展示+[手把手视频教程和开发文档]【亮点功能】1.Springboot+Vue+Element-UI+Mysql前后端分离2.Echarts图表统计数据,直观展示数据情况3.发表评论后,用户可以回复评论,回复的评论可以被再次回复,一级评论可以添加图片附件4.爬虫图书数据1万+5.推荐图书列表展示,推荐图书
- 智能房屋推荐系统 爬虫1w+数据 协同过滤余弦函数推荐
小盼江
课题设计毕设课设爬虫推荐算法毕业设计课程设计
智能房屋推荐系统爬虫1w+数据协同过滤余弦函数推荐毕设课设【亮点功能】1.Springboot+Vue+Element-UI+Mysql前后端分离2.Echarts图表统计数据,直观展示数据情况3.发表评论后,用户可以回复评论,回复的评论可以被再次回复,一级评论可以添加图片附件\4.爬虫房屋数据1万+5.推荐房屋列表展示,使用协同过滤余弦函数根据用户的评论,收藏,浏览历史数据进行推荐6.数据导出和
- Hadoop智能房屋推荐系统 爬虫1w+ 协同过滤余弦函数推荐 代码+视频教程+文档
小盼江
课题设计Hadoop课设hadoop爬虫大数据
Hadoop智能房屋推荐系统爬虫1w+协同过滤余弦函数推荐带视频教程毕设设计课题设计【Hadoop项目】1.data.csv上传到hadoop集群环境2.data.csv数据清洗3.MapReducer数据汇总处理,将Reducer的结果数据保存到本地Mysql数据库中4.Springboot+Echarts+MySQL显示数据分析结果分析数据维度如下:【房屋分类热度】【各分类下房屋数量及占比】【
- 面向对象面向过程
3213213333332132
java
面向对象:把要完成的一件事,通过对象间的协作实现。
面向过程:把要完成的一件事,通过循序依次调用各个模块实现。
我把大象装进冰箱这件事为例,用面向对象和面向过程实现,都是用java代码完成。
1、面向对象
package bigDemo.ObjectOriented;
/**
* 大象类
*
* @Description
* @author FuJian
- Java Hotspot: Remove the Permanent Generation
bookjovi
HotSpot
openjdk上关于hotspot将移除永久带的描述非常详细,http://openjdk.java.net/jeps/122
JEP 122: Remove the Permanent Generation
Author Jon Masamitsu
Organization Oracle
Created 2010/8/15
Updated 2011/
- 正则表达式向前查找向后查找,环绕或零宽断言
dcj3sjt126com
正则表达式
向前查找和向后查找
1. 向前查找:根据要匹配的字符序列后面存在一个特定的字符序列(肯定式向前查找)或不存在一个特定的序列(否定式向前查找)来决定是否匹配。.NET将向前查找称之为零宽度向前查找断言。
对于向前查找,出现在指定项之后的字符序列不会被正则表达式引擎返回。
2. 向后查找:一个要匹配的字符序列前面有或者没有指定的
- BaseDao
171815164
seda
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
public class BaseDao {
public Conn
- Ant标签详解--Java命令
g21121
Java命令
这一篇主要介绍与java相关标签的使用 终于开始重头戏了,Java部分是我们关注的重点也是项目中用处最多的部分。
1
- [简单]代码片段_电梯数字排列
53873039oycg
代码
今天看电梯数字排列是9 18 26这样呈倒N排列的,写了个类似的打印例子,如下:
import java.util.Arrays;
public class 电梯数字排列_S3_Test {
public static void main(S
- Hessian原理
云端月影
hessian原理
Hessian 原理分析
一. 远程通讯协议的基本原理
网络通信需要做的就是将流从一台计算机传输到另外一台计算机,基于传输协议和网络 IO 来实现,其中传输协议比较出名的有 http 、 tcp 、 udp 等等, http 、 tcp 、 udp 都是在基于 Socket 概念上为某类应用场景而扩展出的传输协
- 区分Activity的四种加载模式----以及Intent的setFlags
aijuans
android
在多Activity开发中,有可能是自己应用之间的Activity跳转,或者夹带其他应用的可复用Activity。可能会希望跳转到原来某个Activity实例,而不是产生大量重复的Activity。
这需要为Activity配置特定的加载模式,而不是使用默认的加载模式。 加载模式分类及在哪里配置
Activity有四种加载模式:
standard
singleTop
- hibernate几个核心API及其查询分析
antonyup_2006
html.netHibernatexml配置管理
(一) org.hibernate.cfg.Configuration类
读取配置文件并创建唯一的SessionFactory对象.(一般,程序初始化hibernate时创建.)
Configuration co
- PL/SQL的流程控制
百合不是茶
oraclePL/SQL编程循环控制
PL/SQL也是一门高级语言,所以流程控制是必须要有的,oracle数据库的pl/sql比sqlserver数据库要难,很多pl/sql中有的sqlserver里面没有
流程控制;
分支语句 if 条件 then 结果 else 结果 end if ;
条件语句 case when 条件 then 结果;
循环语句 loop
- 强大的Mockito测试框架
bijian1013
mockito单元测试
一.自动生成Mock类 在需要Mock的属性上标记@Mock注解,然后@RunWith中配置Mockito的TestRunner或者在setUp()方法中显示调用MockitoAnnotations.initMocks(this);生成Mock类即可。二.自动注入Mock类到被测试类 &nbs
- 精通Oracle10编程SQL(11)开发子程序
bijian1013
oracle数据库plsql
/*
*开发子程序
*/
--子程序目是指被命名的PL/SQL块,这种块可以带有参数,可以在不同应用程序中多次调用
--PL/SQL有两种类型的子程序:过程和函数
--开发过程
--建立过程:不带任何参数
CREATE OR REPLACE PROCEDURE out_time
IS
BEGIN
DBMS_OUTPUT.put_line(systimestamp);
E
- 【EhCache一】EhCache版Hello World
bit1129
Hello world
本篇是EhCache系列的第一篇,总体介绍使用EhCache缓存进行CRUD的API的基本使用,更细节的内容包括EhCache源代码和设计、实现原理在接下来的文章中进行介绍
环境准备
1.新建Maven项目
2.添加EhCache的Maven依赖
<dependency>
<groupId>ne
- 学习EJB3基础知识笔记
白糖_
beanHibernatejbosswebserviceejb
最近项目进入系统测试阶段,全赖袁大虾领导有力,保持一周零bug记录,这也让自己腾出不少时间补充知识。花了两天时间把“传智播客EJB3.0”看完了,EJB基本的知识也有些了解,在这记录下EJB的部分知识,以供自己以后复习使用。
EJB是sun的服务器端组件模型,最大的用处是部署分布式应用程序。EJB (Enterprise JavaBean)是J2EE的一部分,定义了一个用于开发基
- angular.bootstrap
boyitech
AngularJSAngularJS APIangular中文api
angular.bootstrap
描述:
手动初始化angular。
这个函数会自动检测创建的module有没有被加载多次,如果有则会在浏览器的控制台打出警告日志,并且不会再次加载。这样可以避免在程序运行过程中许多奇怪的问题发生。
使用方法: angular .
- java-谷歌面试题-给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数
bylijinnan
java
public class SearchInShiftedArray {
/**
* 题目:给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数。
* 请在这个特殊数组中找出给定的整数。
* 解答:
* 其实就是“旋转数组”。旋转数组的最小元素见http://bylijinnan.iteye.com/bl
- 天使还是魔鬼?都是我们制造
ducklsl
生活教育情感
----------------------------剧透请原谅,有兴趣的朋友可以自己看看电影,互相讨论哦!!!
从厦门回来的动车上,无意中瞟到了书中推荐的几部关于儿童的电影。当然,这几部电影可能会另大家失望,并不是类似小鬼当家的电影,而是关于“坏小孩”的电影!
自己挑了两部先看了看,但是发现看完之后,心里久久不能平
- [机器智能与生物]研究生物智能的问题
comsci
生物
我想,人的神经网络和苍蝇的神经网络,并没有本质的区别...就是大规模拓扑系统和中小规模拓扑分析的区别....
但是,如果去研究活体人类的神经网络和脑系统,可能会受到一些法律和道德方面的限制,而且研究结果也不一定可靠,那么希望从事生物神经网络研究的朋友,不如把
- 获取Android Device的信息
dai_lm
android
String phoneInfo = "PRODUCT: " + android.os.Build.PRODUCT;
phoneInfo += ", CPU_ABI: " + android.os.Build.CPU_ABI;
phoneInfo += ", TAGS: " + android.os.Build.TAGS;
ph
- 最佳字符串匹配算法(Damerau-Levenshtein距离算法)的Java实现
datamachine
java算法字符串匹配
原文:http://www.javacodegeeks.com/2013/11/java-implementation-of-optimal-string-alignment.html------------------------------------------------------------------------------------------------------------
- 小学5年级英语单词背诵第一课
dcj3sjt126com
englishword
long 长的
show 给...看,出示
mouth 口,嘴
write 写
use 用,使用
take 拿,带来
hand 手
clever 聪明的
often 经常
wash 洗
slow 慢的
house 房子
water 水
clean 清洁的
supper 晚餐
out 在外
face 脸,
- macvim的使用实战
dcj3sjt126com
macvim
macvim用的是mac里面的vim, 只不过是一个GUI的APP, 相当于一个壳
1. 下载macvim
https://code.google.com/p/macvim/
2. 了解macvim
:h vim的使用帮助信息
:h macvim
- java二分法查找
蕃薯耀
java二分法查找二分法java二分法
java二分法查找
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 11:40:03 星期二
http:/
- Spring Cache注解+Memcached
hanqunfeng
springmemcached
Spring3.1 Cache注解
依赖jar包:
<!-- simple-spring-memcached -->
<dependency>
<groupId>com.google.code.simple-spring-memcached</groupId>
<artifactId>simple-s
- apache commons io包快速入门
jackyrong
apache commons
原文参考
http://www.javacodegeeks.com/2014/10/apache-commons-io-tutorial.html
Apache Commons IO 包绝对是好东西,地址在http://commons.apache.org/proper/commons-io/,下面用例子分别介绍:
1) 工具类
2
- 如何学习编程
lampcy
java编程C++c
首先,我想说一下学习思想.学编程其实跟网络游戏有着类似的效果.开始的时候,你会对那些代码,函数等产生很大的兴趣,尤其是刚接触编程的人,刚学习第一种语言的人.可是,当你一步步深入的时候,你会发现你没有了以前那种斗志.就好象你在玩韩国泡菜网游似的,玩到一定程度,每天就是练级练级,完全是一个想冲到高级别的意志力在支持着你.而学编程就更难了,学了两个月后,总是觉得你好象全都学会了,却又什么都做不了,又没有
- 架构师之spring-----spring3.0新特性的bean加载控制@DependsOn和@Lazy
nannan408
Spring3
1.前言。
如题。
2.描述。
@DependsOn用于强制初始化其他Bean。可以修饰Bean类或方法,使用该Annotation时可以指定一个字符串数组作为参数,每个数组元素对应于一个强制初始化的Bean。
@DependsOn({"steelAxe","abc"})
@Comp
- Spring4+quartz2的配置和代码方式调度
Everyday都不同
代码配置spring4quartz2.x定时任务
前言:这些天简直被quartz虐哭。。因为quartz 2.x版本相比quartz1.x版本的API改动太多,所以,只好自己去查阅底层API……
quartz定时任务必须搞清楚几个概念:
JobDetail——处理类
Trigger——触发器,指定触发时间,必须要有JobDetail属性,即触发对象
Scheduler——调度器,组织处理类和触发器,配置方式一般只需指定触发
- Hibernate入门
tntxia
Hibernate
前言
使用面向对象的语言和关系型的数据库,开发起来很繁琐,费时。由于现在流行的数据库都不面向对象。Hibernate 是一个Java的ORM(Object/Relational Mapping)解决方案。
Hibernte不仅关心把Java对象对应到数据库的表中,而且提供了请求和检索的方法。简化了手工进行JDBC操作的流程。
如
- Math类
xiaoxing598
Math
一、Java中的数字(Math)类是final类,不可继承。
1、常数 PI:double圆周率 E:double自然对数
2、截取(注意方法的返回类型) double ceil(double d) 返回不小于d的最小整数 double floor(double d) 返回不大于d的整最大数 int round(float f) 返回四舍五入后的整数 long round