RT-Thread内核源码分析-优先级反转代码实现

目录

优先级反转概念

如何解决优先级反转

优先级继承代码实现分析


优先级反转概念

       优先级反转是指一个低优先级的任务持有一个被高优先级任务所需要的共享资源。高优先任务由于因资源缺乏而处于受阻状态,一直等到低优先级任务释放资源为止。而低优先级获得的CPU时间少,如果此时有优先级处于两者之间的任务,并且不需要那个共享资源,则该中优先级的任务反而超过这两个任务而获得CPU时间。如果高优先级等待资源时不是阻塞等待,而是忙循环,则可能永远无法获得资源,因为此时低优先级进程无法与高优先级进程争夺CPU时间,从而无法执行,进而无法释放资源,造成的后果就是高优先级任务无法获得资源而继续推进。

假设三个任务准备执行,A,B,C,优先级依次是A>B>C;

首先:C处于运行状态,获得CPU正在执行,同时占有了某种资源;

其次:A进入就绪状态,因为优先级比C高,所以获得CPU,A转为运行状态;C进入就绪状态;

第三:执行过程中需要使用资源,而这个资源又被等待中的C占有的,于是A进入阻塞状态,C回到运行状态;

第四:此时B进入就绪状态,因为优先级比C高,B获得CPU,进入运行状态;C又回到就绪状态;

第五:如果这时又出现B2,B3等任务,他们的优先级比C高,但比A低,那么就会出现高优先级任务的A不能执行,反而低优先级的B,B2,B3等任务可以执行的奇怪现象,而这就是优先反转。

如何解决优先级反转

高优先级任务A不能执行的原因是C霸占了资源,而C如果不能获得CPU,不释放资源,那A也只好一直等在那,所以解决优先级反转的原则肯定就是让C尽快执行,尽早把资源释放了。基于这个原则产生了两个方法:

    优先级继承

当发现高优先级的任务因为低优先级任务占用资源而阻塞时,就将低优先级任务的优先级提升到等待它所占有的资源的最高优先级任务的优先级。

    优先级天花板

优先级天花板是指将申请某资源的任务的优先级提升到可能访问该资源的所有任务中最高优先级任务的优先级.(这个优先级称为该资源的优先级天花板) 

    两者的区别

优先级继承:只有一个任务访问资源时一切照旧,没有区别,只有当高优先级任务因为资源被低优先级占有而被阻塞时,才会提高占有资源任务的优先级;而优先级天花板,不论是否发生阻塞,都提升,即谁先拿到资源,就将这个任务提升到该资源的天花板优先级。

 

优先级继承代码实现分析

       优先级反转是所有操作系统都会面临的一个问题, 相比于Linux,RT-Thread内核更加小巧,通过分析RT-Thread内核可以更加快速的理解一些概念原理。

       既然是优先级反转,就势必会涉及到竞争共享资源加锁阻塞的操作,另外, 还要确保RTOS操作系统的实时性,即确保高优先级线程尽可能快的被执行,也就意味着当所有者释放锁之后,应当确保阻塞的高优先级线程被立即调度。接下来我们以RT-Thread 获取互斥锁的加锁和解锁接口rt_mutex_take rt_mutex_release来分析优先级继承的实现。

/**
 * This function will take a mutex, if the mutex is unavailable, the
 * thread shall wait for a specified time.
 *
 * @param mutex the mutex object
 * @param time the waiting time
 *
 * @return the error code
 */
rt_err_t rt_mutex_take(rt_mutex_t mutex, rt_int32_t time)
{
    register rt_base_t temp;
    struct rt_thread *thread;

    /* this function must not be used in interrupt even if time = 0 */
    RT_DEBUG_IN_THREAD_CONTEXT;

    RT_ASSERT(mutex != RT_NULL);

    /* disable interrupt */
    temp = rt_hw_interrupt_disable();// 关中断

    /* get current thread */
    thread = rt_thread_self();//获取当前线程控制块

    RT_OBJECT_HOOK_CALL(rt_object_trytake_hook, (&(mutex->parent.parent)));

    RT_DEBUG_LOG(RT_DEBUG_IPC,
                 ("mutex_take: current thread %s, mutex value: %d, hold: %d\n",
                  thread->name, mutex->value, mutex->hold));

    /* reset thread error */
    thread->error = RT_EOK;

    if (mutex->owner == thread)// 判断锁的主人是否是当前线程 ,如果是当前线程,则意味着重复加锁, RT-Thread是允许重复加锁的, 只要用户确保加锁和解锁操作是配对的即可,这个和rt_hw_interrupt_disable类似,可重复调用,用户需要确保成对出现即可。
    {
        /* it's the same thread */
        mutex->hold ++;
    }
    else
    {
        /* The value of mutex is 1 in initial status. Therefore, if the
         * value is great than 0, it indicates the mutex is avaible.
         */
        if (mutex->value > 0)//互斥锁可用
        {
            /* mutex is available */
            mutex->value --;

            /* set mutex owner and original priority */
            mutex->owner             = thread;
            mutex->original_priority = thread->current_priority;
            mutex->hold ++;
        }
        else
        {//互斥锁不可用, 也只有当获取不到锁的时候,才有可能导致优先级反转
            /* no waiting, return with timeout */
            if (time == 0)
            {//获取不到锁,立即返回
                /* set error as timeout */
                thread->error = -RT_ETIMEOUT;

                /* enable interrupt */
                rt_hw_interrupt_enable(temp);

                return -RT_ETIMEOUT;
            }
            else
            {//锁不可用,   进入阻塞逻辑
                /* mutex is unavailable, push to suspend list */
                RT_DEBUG_LOG(RT_DEBUG_IPC, ("mutex_take: suspend thread: %s\n",
                                            thread->name));

                /* change the owner thread priority of mutex */
                //接下来这行代码就是优先级继承的代码实现, 
                if (thread->current_priority < mutex->owner->current_priority)
                {//判断当前线程的优先级和锁拥有者线程的优先级,如果当前线程优先级高,则有可能发生优先级反转,内核就需要采用优先级继承的方式来解决此问题。
                    /* change the owner thread priority */
                    //通过rt_thread_control将锁拥有者线程的优先级提升到与当前线程同样的优先级
                    rt_thread_control(mutex->owner,
                                      RT_THREAD_CTRL_CHANGE_PRIORITY,
                                      &thread->current_priority);
                }

                /* suspend current thread */
                rt_ipc_list_suspend(&(mutex->parent.suspend_thread),
                                    thread,
                                    mutex->parent.parent.flag);

                /* has waiting time, start thread timer */
                if (time > 0)
                {//如果允许的阻塞时间有效,则需要启动定时器.
                    RT_DEBUG_LOG(RT_DEBUG_IPC,
                                 ("mutex_take: start the timer of thread:%s\n",
                                  thread->name));

                    /* reset the timeout of thread timer and start it */
                    rt_timer_control(&(thread->thread_timer),
                                     RT_TIMER_CTRL_SET_TIME,
                                     &time);
                    rt_timer_start(&(thread->thread_timer));
                }

                /* enable interrupt */
                rt_hw_interrupt_enable(temp);

                /* do schedule */
                //执行调度, 锁拥有者线程将会被调度执行。
                rt_schedule();

                if (thread->error != RT_EOK)
                {
                    /* return error */
                    return thread->error;
                }
                else
                {
                    /* the mutex is taken successfully. */
                    /* disable interrupt */
                    temp = rt_hw_interrupt_disable();
                }
            }
        }
    }

    /* enable interrupt */
    rt_hw_interrupt_enable(temp);

    RT_OBJECT_HOOK_CALL(rt_object_take_hook, (&(mutex->parent.parent)));

    return RT_EOK;
}

rt_mutex_take实现了优先级继承的相关代码,会在适当的时候,对锁拥有者的线程优先级进行提升, rt_mutex_release则需要确保锁被释放后,立即调度被阻塞的高优先级线程, 这样才能确保高优先级线程被挂起的时间尽可能短。

/**
 * This function will release a mutex, if there are threads suspended on mutex,
 * it will be waked up.
 *
 * @param mutex the mutex object
 *
 * @return the error code
 */
rt_err_t rt_mutex_release(rt_mutex_t mutex)
{
    register rt_base_t temp;
    struct rt_thread *thread;
    rt_bool_t need_schedule;

    need_schedule = RT_FALSE;

    /* only thread could release mutex because we need test the ownership */
    RT_DEBUG_IN_THREAD_CONTEXT;

    /* get current thread */
    thread = rt_thread_self();//获取当前线程控制块

    /* disable interrupt */
    temp = rt_hw_interrupt_disable();//关中断

    RT_DEBUG_LOG(RT_DEBUG_IPC,
                 ("mutex_release:current thread %s, mutex value: %d, hold: %d\n",
                  thread->name, mutex->value, mutex->hold));

    RT_OBJECT_HOOK_CALL(rt_object_put_hook, (&(mutex->parent.parent)));

    /* mutex only can be released by owner */
    if (thread != mutex->owner)//错误操作, 一个锁只能被加锁者释放
    {
        thread->error = -RT_ERROR;

        /* enable interrupt */
        rt_hw_interrupt_enable(temp);

        return -RT_ERROR;
    }

    /* decrease hold */
    mutex->hold --;
    /* if no hold */
    if (mutex->hold == 0)
    {//计数器为0,则锁被彻底释放,即不再有线程占用该锁。
        /* change the owner thread to original priority */
        if (mutex->original_priority != mutex->owner->current_priority)
        {//判断锁的线程原始优先级和当前优先级是否一致,如果不一致,则意味着发生了优先级继承,需要在这里恢复。
            rt_thread_control(mutex->owner,
                              RT_THREAD_CTRL_CHANGE_PRIORITY,
                              &(mutex->original_priority));
        }

        /* wakeup suspended thread */
        if (!rt_list_isempty(&mutex->parent.suspend_thread))
        {//如果有被挂起到该锁的线程,则设置标志位need_schedule
,重新调度。这里有一个问题: 如果当前线程为最高优先级,那么当锁释放后需要继续运行,这时是不能重新调度的,如果当前线程为低优先级,且阻塞了高优先级线程,那么锁释放后就需要立即进行调度, RT-Thread将以上判断逻辑放在了函数rt_schedule中实现。
            /* get suspended thread */
            thread = rt_list_entry(mutex->parent.suspend_thread.next,
                                   struct rt_thread,
                                   tlist);

            RT_DEBUG_LOG(RT_DEBUG_IPC, ("mutex_release: resume thread: %s\n",
                                        thread->name));

            /* set new owner and priority */
            mutex->owner             = thread;
            mutex->original_priority = thread->current_priority;
            mutex->hold ++;

            /* resume thread */
            rt_ipc_list_resume(&(mutex->parent.suspend_thread));

            need_schedule = RT_TRUE;
        }
        else
        {
            /* increase value */
            mutex->value ++;

            /* clear owner */
            mutex->owner             = RT_NULL;
            mutex->original_priority = 0xff;
        }
    }

    /* enable interrupt */
    rt_hw_interrupt_enable(temp);

    /* perform a schedule */
    if (need_schedule == RT_TRUE)
        rt_schedule();

    return RT_EOK;
}

 

/**
 * This function will perform one schedule. It will select one thread
 * with the highest priority level, then switch to it.
 */
void rt_schedule(void)
{
    rt_base_t level;
    struct rt_thread *to_thread;
    struct rt_thread *from_thread;

    /* disable interrupt */
    level = rt_hw_interrupt_disable();

    /* check the scheduler is enabled or not */
    if (rt_scheduler_lock_nest == 0)
    {
        register rt_ubase_t highest_ready_priority;

#if RT_THREAD_PRIORITY_MAX <= 32
        highest_ready_priority = __rt_ffs(rt_thread_ready_priority_group) - 1;
#else
        register rt_ubase_t number;

        number = __rt_ffs(rt_thread_ready_priority_group) - 1;
        highest_ready_priority = (number << 3) + __rt_ffs(rt_thread_ready_table[number]) - 1;
#endif

        /* get switch to thread */
        //获取当前最高优先级线程控制块
        to_thread = rt_list_entry(rt_thread_priority_table[highest_ready_priority].next,
                                  struct rt_thread,
                                  tlist);

        /* if the destination thread is not the same as current thread */
        if (to_thread != rt_current_thread)
        {//如果有比当前线程更高优先级的,则调度
            rt_current_priority = (rt_uint8_t)highest_ready_priority;
            from_thread         = rt_current_thread;
            rt_current_thread   = to_thread;

            RT_OBJECT_HOOK_CALL(rt_scheduler_hook, (from_thread, to_thread));

            /* switch to new thread */
            RT_DEBUG_LOG(RT_DEBUG_SCHEDULER,
                         ("[%d]switch to priority#%d "
                          "thread:%.*s(sp:0x%p), "
                          "from thread:%.*s(sp: 0x%p)\n",
                          rt_interrupt_nest, highest_ready_priority,
                          RT_NAME_MAX, to_thread->name, to_thread->sp,
                          RT_NAME_MAX, from_thread->name, from_thread->sp));

#ifdef RT_USING_OVERFLOW_CHECK
            _rt_scheduler_stack_check(to_thread);
#endif

            if (rt_interrupt_nest == 0)
            {
                rt_hw_context_switch((rt_uint32_t)&from_thread->sp,
                                     (rt_uint32_t)&to_thread->sp);
            }
            else
            {
                RT_DEBUG_LOG(RT_DEBUG_SCHEDULER, ("switch in interrupt\n"));

                rt_hw_context_switch_interrupt((rt_uint32_t)&from_thread->sp,
                                               (rt_uint32_t)&to_thread->sp);
            }
        }
    }

    /* enable interrupt */
    rt_hw_interrupt_enable(level);
}

     优先级继承的神秘面纱就这么被揭开了,是不是很简单呢?

 

 

 

你可能感兴趣的:(嵌入式开发,优先级反转,优先级继承代码实现)