利用Selenium抓取淘宝商品并用pyquery解析得到商品的图片、名称、价格、购买人数、店铺名称和店铺所在地信息,并将其保存到MongoDB。
确保已经正确安装好Chrome浏览器并配置好了ChromeDriver;另外,还需要正确安装Python的Selenium库;最后,还对接了PhantomJS和Firefox,请确保安装好PhantomJS和Firefox并配置好了GeckoDriver。
首先,来看下淘宝的接口,看看它比一般Ajax多了怎样的内容。
打开淘宝页面,搜索商品,比如iPad,此时打开开发者工具,截获Ajax请求,可以发现获取商品列表的接口,如图1所示。
它的链接包含了几个GET参数,如果要想构造Ajax链接,直接请求再好不过了,它的返回内容是JSON格式,如图2所示。
但是这个Ajax接口包含几个参数,其中_ksTS、rn参数不能直接发现其规律,如果要去探寻它的生成规律,也不是做不到,但这样相对会比较烦琐,所以如果直接用Selenium来模拟浏览器的话,就不需要再关注这些接口参数了,只要在浏览器里面可以看到的,都可以爬取。这也是选用Selenium爬取淘宝的原因。
本节的目标是爬取商品信息。图3是一个商品条目,其中包含商品的基本信息,包括商品图片、名称、价格、购买人数、店铺名称和店铺所在地,要做的就是将这些信息都抓取下来。
抓取入口就是淘宝的搜索页面,这个链接可以通过直接构造参数访问。例如,如果搜索iPad,就可以直接访问https://s.taobao.com/search?q=iPad,呈现的就是第一页的搜索结果,如图4所示。
在页面下方,有一个分页导航,其中既包括前5页的链接,也包括下一页的链接,同时还有一个输入任意页码跳转的链接,如图5所示。
https://qiniu.cuiqingcai.com/wp-content/uploads/2018/02/7-23-1.jpg
这里商品的搜索结果一般最大都为100页,要获取每一页的内容,只需要将页码从1到100顺序遍历即可,页码数是确定的。所以,直接在页面跳转文本框中输入要跳转的页码,然后点击“确定”按钮即可跳转到页码对应的页面。
这里不直接点击“下一页”的原因是:一旦爬取过程中出现异常退出,比如到50页退出了,此时点击“下一页”时,就无法快速切换到对应的后续页面了。此外,在爬取过程中,也需要记录当前的页码数,而且一旦点击“下一页”之后页面加载失败,还需要做异常检测,检测当前页面是加载到了第几页。整个流程相对比较复杂,所以这里直接用跳转的方式来爬取页面。
当成功加载出某一页商品列表时,利用Selenium即可获取页面源代码,然后再用相应的解析库解析即可。这里选用pyquery进行解析。下面用代码来实现整个抓取过程。
首先,需要构造一个抓取的URL:https://s.taobao.com/search?q=iPad。这个URL非常简洁,参数q就是要搜索的关键字。只要改变这个参数,即可获取不同商品的列表。这里将商品的关键字定义成一个变量,然后构造出这样的一个URL。
然后,就需要用Selenium进行抓取了。实现如下抓取列表页的方法:
from selenium import webdriver
from selenium.common.exceptions import TimeoutException
from selenium.webdriver.common.by import By
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.support.wait import WebDriverWait
from urllib.parse import quote
browser = webdriver.Chrome()
wait = WebDriverWait(browser, 10)
KEYWORD = 'iPad'
def index_page(page):
"""
抓取索引页
:param page: 页码
"""
print('正在爬取第', page, '页')
try:
url = 'https://s.taobao.com/search?q=' + quote(KEYWORD)
browser.get(url)
if page > 1:
input = wait.until(
EC.presence_of_element_located((By.CSS_SELECTOR, '#mainsrp-pager div.form > input')))
submit = wait.until(
EC.element_to_be_clickable((By.CSS_SELECTOR, '#mainsrp-pager div.form > span.btn.J_Submit')))
input.clear()
input.send_keys(page)
submit.click()
wait.until(
EC.text_to_be_present_in_element((By.CSS_SELECTOR, '#mainsrp-pager li.item.active > span'), str(page)))
wait.until(EC.presence_of_element_located((By.CSS_SELECTOR, '.m-itemlist .items .item')))
get_products()
except TimeoutException:
index_page(page)
这里首先构造了一个WebDriver对象,使用的浏览器是Chrome,然后指定一个关键词,如iPad,接着定义了index_page()方法,用于抓取商品列表页。
在该方法里,首先访问了搜索商品的链接,然后判断了当前的页码,如果大于1,就进行跳页操作,否则等待页面加载完成。
等待加载时,使用了WebDriverWait对象,它可以指定等待条件,同时指定一个最长等待时间,这里指定为最长10秒。如果在这个时间内成功匹配了等待条件,也就是说页面元素成功加载出来了,就立即返回相应结果并继续向下执行,否则到了最大等待时间还没有加载出来时,就直接抛出超时异常。
比如,最终要等待商品信息加载出来,就指定了presence_of_element_located这个条件,然后传入了.m-itemlist .items .item这个选择器,而这个选择器对应的页面内容就是每个商品的信息块,可以到网页里面查看一下。如果加载成功,就会执行后续的get_products()方法,提取商品信息。
关于翻页操作,这里首先获取页码输入框,赋值为input,然后获取“确定”按钮,赋值为submit,分别是图6中的两个元素。
首先,清空了输入框,此时调用clear()方法即可。随后,调用send_keys()方法将页码填充到输入框中,然后点击“确定”按钮即可。
那么,怎样知道有没有跳转到对应的页码呢?可以注意到,成功跳转某一页后,页码都会高亮显示,如图7所示。
只需要判断当前高亮的页码数是当前的页码数即可,所以这里使用了另一个等待条件text_to_be_present_in_element,它会等待指定的文本出现在某一个节点里面时即返回成功。这里将高亮的页码节点对应的CSS选择器和当前要跳转的页码通过参数传递给这个等待条件,这样它就会检测当前高亮的页码节点是不是传过来的页码数,如果是,就证明页面成功跳转到了这一页,页面跳转成功。
这样刚才实现的index_page()方法就可以传入对应的页码,待加载出对应页码的商品列表后,再去调用get_products()方法进行页面解析。
接下来,就可以实现get_products()方法来解析商品列表了。这里直接获取页面源代码,然后用pyquery进行解析,实现如下:
from pyquery import PyQuery as pq
def get_products():
"""
提取商品数据
"""
html = browser.page_source
doc = pq(html)
items = doc('#mainsrp-itemlist .items .item').items()
for item in items:
product = {
'image': item.find('.pic .img').attr('data-src'),
'price': item.find('.price').text(),
'deal': item.find('.deal-cnt').text(),
'title': item.find('.title').text(),
'shop': item.find('.shop').text(),
'location': item.find('.location').text()
}
print(product)
save_to_mongo(product)
首先,调用page_source属性获取页码的源代码,然后构造了PyQuery解析对象,接着提取了商品列表,此时使用的CSS选择器是#mainsrp-itemlist .items .item,它会匹配整个页面的每个商品。它的匹配结果是多个,所以这里又对它进行了一次遍历,用for循环将每个结果分别进行解析,每次循环把它赋值为item变量,每个item变量都是一个PyQuery对象,然后再调用它的find()方法,传入CSS选择器,就可以获取单个商品的特定内容了。
比如,查看一下商品信息的源码,如图8所示。
可以发现,它是一个img节点,包含id、class、data-src、alt和src等属性。这里之所以可以看到这张图片,是因为它的src属性被赋值为图片的URL。把它的src属性提取出来,就可以获取商品的图片了。不过还注意data-src属性,它的内容也是图片的URL,观察后发现此URL是图片的完整大图,而src是压缩后的小图,所以这里抓取data-src属性来作为商品的图片。
因此,需要先利用find()方法找到图片的这个节点,然后再调用attr()方法获取商品的data-src属性,这样就成功提取了商品图片链接。然后用同样的方法提取商品的价格、成交量、名称、店铺和店铺所在地等信息,接着将所有提取结果赋值为一个字典product,随后调用save_to_mongo()将其保存到MongoDB即可。
接下来,将商品信息保存到MongoDB,实现代码如下:
MONGO_URL = 'localhost'
MONGO_DB = 'taobao'
MONGO_COLLECTION = 'products'
client = pymongo.MongoClient(MONGO_URL)
db = client[MONGO_DB]
def save_to_mongo(result):
"""
保存至MongoDB
:param result: 结果
"""
try:
if db[MONGO_COLLECTION].insert(result):
print('存储到MongoDB成功')
except Exception:
print('存储到MongoDB失败')
这里首先创建了一个MongoDB的连接对象,然后指定了数据库,随后指定了Collection的名称,接着直接调用insert()方法将数据插入到MongoDB。此处的result变量就是在get_products()方法里传来的product,包含单个商品的信息。
刚才所定义的get_index()方法需要接收参数page,page代表页码。这里实现页码遍历即可,代码如下:
MAX_PAGE = 100
def main():
"""
遍历每一页
"""
for i in range(1, MAX_PAGE + 1):
index_page(i)
其实现非常简单,只需要调用一个for循环即可。这里定义最大的页码数为100,range()方法的返回结果就是1到100的列表,顺序遍历,调用index_page()方法即可。
这样的淘宝商品爬虫就完成了,最后调用main()方法即可运行。
运行代码,可以发现首先会弹出一个Chrome浏览器,然后会访问淘宝页面,接着控制台便会输出相应的提取结果,如图7-27所示。
可以发现,这些商品信息的结果都是字典形式,它们被存储到MongoDB里面。
再看一下MongoDB中的结果,如图9所示。
可以看到,所有的信息都保存到MongoDB里了,这说明爬取成功。
从Chrome 59版本开始,已经开始支持Headless模式,也就是无界面模式,这样爬取的时候就不会弹出浏览器了。如果要使用此模式,请把Chrome升级到59版本及以上。启用Headless模式的方式如下:
chrome_options = webdriver.ChromeOptions()
chrome_options.add_argument('--headless')
browser = webdriver.Chrome(chrome_options=chrome_options)
首先,创建ChromeOptions对象,接着添加headless参数,然后在初始化Chrome对象的时候通过chrome_options传递这个ChromeOptions对象,这样就可以成功启用Chrome的Headless模式了。
要对接Firefox浏览器,非常简单,只需要更改一处即可:
browser = webdriver.Firefox()
这里更改了browser对象的创建方式,这样爬取的时候就会使用Firefox浏览器了。
如果不想使用Chrome的Headless模式,还可以使用PhantomJS(它是一个无界面浏览器)来抓取。抓取时,同样不会弹出窗口,还是只需要将WebDriver的声明修改一下即可:
browser = webdriver.PhantomJS()
另外,它还支持命令行配置。比如,可以设置缓存和禁用图片加载的功能,进一步提高爬取效率:
SERVICE_ARGS = ['--load-images=false', '--disk-cache=true']
browser = webdriver.PhantomJS(service_args=SERVICE_ARGS)