深入理解Java虚拟机(七):虚拟机的类加载机制

引言

Java虚拟机把描述类的数据从Class文件加载到内存,并对数据进行校验、转换解析和初始化,最终形成可以被虚拟机直接使用的Java类型,这个过程被称作虚拟机的类加载机制。

类加载时机

一个类型从被加载到虚拟机内存中开始,到卸载出内存为止,它的整个生命周期将会经历加载(Loading)、验证(Verification)、准备(Preparation)、解析(Resolution)、初始化(Initialization)、使用(Using)和卸载(Unloading)七个阶段,其中验证、准备、解析三个部分统称为连接(Linking)。这七个阶段的发生顺序如下图所示:

深入理解Java虚拟机(七):虚拟机的类加载机制_第1张图片
加载、验证、准备、初始化和卸载这五个阶段的顺序是确定的,类型的加载过程必须按照这种顺序按部就班地开始,而解析阶段则不一定:它在某些情况下可以在初始化阶段之后再开始。

关于在什么情况下需要开始类加载过程的第一个阶段“加载”,《Java虚拟机规范》中并没有进行强制约束,这点可以交给虚拟机的具体实现来自由把握。

但是对于初始化阶段,《Java虚拟机规范》则是严格规定了有且只有六种情况必须立即对类进行“初始化”(而加载、验证、准备自然需要在此之前开始):

1. 遇到new、getstatic、putstatic或invokestatic这四条字节码指令时,如果类型没有进行过初始化,则需要先触发其初始化阶段。能够生成这四条指令的典型Java代码场景有:
  • 使用new关键字实例化对象的时候
  • 读取或设置一个类型的静态字段(被final修饰、已在编译期把结果放入常量池的静态字段除外)的时候
  • 调用一个类型的静态方法的时候
2. 使用java.lang.reflect包的方法对类型进行反射调用的时候,如果类型没有进行过初始化,则需要先触发其初始化
3. 当初始化类的时候,如果发现其父类还没有进行过初始化,则需要先触发其父类的初始化
4. 当虚拟机启动时,用户需要指定一个要执行的主类(包含main()方法的那个类),虚拟机会先初始化这个主类
5. 当使用JDK 7新加入的动态语言支持时,如果一个java.lang.invoke.MethodHandle实例最后的解析结果为REF_getStatic、REF_putStatic、REF_invokeStatic、REF_newInvokeSpecial四种类型的方法句柄,并且这个方法句柄对应的类没有进行过初始化,则需要先触发其初始化
6. 当一个接口中定义了JDK 8新加入的默认方法(被default关键字修饰的接口方法)时,如果有这个接口的实现类发生了初始化,那该接口要在其之前被初始化

以上六种行为称为对一个类型进行主动引用。除此之外,所有引用类型的方式都不会触发初始化,称为被动引用。

下面举个被动引用的例子:通过子类引用父类的静态字段,不会导致子类初始化,代码如下:

/**
 * @Description : 父类
 * @Author : huzhiting
 * @Date: 2020-07-08 17:49
 */
public class SuperClass {
    static{
        System.out.println("Super Class init !");
    }
    public static int value = 123;
}

/**
 * @Description : 子类
 * @Author : huzhiting
 * @Date: 2020-07-08 17:50
 */
public class SubClass extends SuperClass {
    static {
        System.out.println("Sub Class init !");
    }
}

public class Test {
    public static void main(String[] args) {
        System.out.println(SubClass.value);
    }
}

上述代码运行之后,只会输出“SuperClass init!”,而不会输出“SubClass init!”。对于静态字段,只有直接定义这个字段的类才会被初始化,因此通过其子类来引用父类中定义的静态字段,只会触发父类的初始化而不会触发子类的初始化。

类加载过程

阶段一:加载

在加载阶段,Java虚拟机需要完成以下三件事情:

  1. 通过一个类的全限定名来获取定义此类的二进制字节流。

  2. 将这个字节流所代表的静态存储结构转化为方法区的运行时数据结构。

  3. 在内存中生成一个代表这个类的java.lang.Class对象,作为方法区这个类的各种数据的访问入口。

加载阶段与连接阶段的部分动作(如一部分字节码文件格式验证动作)是交叉进行的,加载阶段尚未完成,连接阶段可能已经开始,但这些夹在加载阶段之中进行的动作,仍然属于连接阶段的一部分,这两个阶段的开始时间仍然保持着固定的先后顺序。

阶段二:验证

验证是连接阶段的第一步,这一阶段的目的是确保Class文件的字节流中包含的信息符合《Java虚拟机规范》的全部约束要求,保证这些信息被当作代码运行后不会危害虚拟机自身的安全。

验证阶段大致上会完成下面四个阶段的检验动作:文件格式验证、元数据验证、字节码验证和符号引用验证。

1. 文件格式验证:验证字节流是否符合Class文件格式的规范

这一阶段可能包括下面这些验证点:

  • 是否以魔数0xCAFEBABE开头
  • 主、次版本号是否在当前Java虚拟机接受范围之内
  • 常量池的常量中是否有不被支持的常量类型(检查常量tag标志)
  • 指向常量的各种索引值中是否有指向不存在的常量或不符合类型的常量
  • CONSTANT_Utf8_info型的常量中是否有不符合UTF-8编码的数据
  • Class文件中各个部分及文件本身是否有被删除的或附加的其他信息
    … …

2. 元数据验证:对字节码描述的信息进行语义分析

这个阶段可能包括的验证点如下:

  • 这个类是否有父类(除了java.lang.Object之外,所有的类都应当有父类)
  • 这个类的父类是否继承了不允许被继承的类(被final修饰的类)
  • 如果这个类不是抽象类,是否实现了其父类或接口之中要求实现的所有方法
  • 类中的字段、方法是否与父类产生矛盾(例如覆盖了父类的final字段,或者出现不符合规则的方法重载,例如方法参数都一致,但返回值类型却不同等。
    … …

这一阶段主要目的是对类的元数据信息进行语义校验,保证不存在与《Java语言规范》定义相悖的元数据信息。

3. 字节码验证:对类的方法体(Class文件中的Code属性)进行校验分析,保证被校验类的方法在运行时不会做出危害虚拟机安全的行为

这一阶段是整个验证过程中最复杂的一个阶段,主要目的是通过数据流分析和控制流分析,确定程序语义是合法的、符合逻辑的。例如:

  • 保证任意时刻操作数栈的数据类型与指令代码序列都能配合工作,例如不会出现类似于“在操作栈放置了一个int类型的数据,使用时却按long类型来加载入本地变量表中”这样的情况
  • 保证任何跳转指令都不会跳转到方法体以外的字节码指令上
  • 保证方法体中的类型转换总是有效的
    … …

4. 符号引用验证:对类自身以外(常量池中的各种符号引用)的各类信息进行匹配性校验

最后一个阶段的校验行为发生在虚拟机将符号引用转化为直接引用的时候,这个转化动作将在连接的第三阶段——解析阶段中发生。本阶段通常需要校验下列内容:

  • 符号引用中通过字符串描述的全限定名是否能找到对应的类
  • 在指定类中是否存在符合方法的字段描述符及简单名称所描述的方法和字段
  • 符号引用中的类、字段、方法的可访问性(private、protected、public、)是否可被当前类访问
    … …

符号引用验证的主要目的是确保解析行为能正常执行,如果无法通过符号引用验证,Java虚拟机将会抛出一个java.lang.IncompatibleClassChangeError的子类异常,典型的如:java.lang.IllegalAccessError、java.lang.NoSuchFieldError、java.lang.NoSuchMethodError等。

阶段三:准备

准备阶段是正式为类中定义的变量(即静态变量,被static修饰的变量)分配内存并设置类变量初始值的阶段。

关于准备阶段,这时候进行内存分配的仅包括类变量,而不包括实例变量,实例变量将会在对象实例化时随着对象一起分配在Java堆中。

其次,初始值“通常情况”下是数据类型的零值,假设一个类变量的定义为:

private static int value =123;

那变量value在准备阶段过后的初始值为0而不是123,因为这时尚未开始执行任何Java方法。

把value赋值为123的putstatic指令是程序被编译后,存放于类构造器()方法之中,所以把value赋值为123的动作要到类的初始化阶段才会被执行。

如果类字段的字段属性表中存在ConstantValue属性,那在准备阶段变量值就会被初始化为ConstantValue属性所指定的初始值,假设上面类变量value的定义修改为:

private static final int value =123;

编译时Javac将会为value生成ConstantValue属性,在准备阶段虚拟机就会根据Con-stantValue的设置将value赋值为123。

阶段四:解析

解析阶段是Java虚拟机将常量池内的符号引用替换为直接引用的过程。

  • 符号引用(Symbolic References):符号引用以一组符号来描述所引用的目标,符号可以是任何形式的字面量,只要使用时能无歧义地定位到目标即可。
  • 直接引用(Direct References):直接引用是可以直接指向目标的指针、相对偏移量或者是一个能间接定位到目标的句柄。

《Java虚拟机规范》之中并未规定解析阶段发生的具体时间,只要求了在执行ane-warray、checkcast、getfield、getstatic、instanceof、invokedynamic、invokeinterface、invoke-special、invokestatic、invokevirtual、ldc、ldc_w、ldc2_w、multianewarray、new、putfield和putstatic这17个用于操作符号引用的字节码指令之前,先对它们所使用的符号引用进行解析。

类似地,对方法或者字段的访问,也会在解析阶段中对它们的可访问性(public、protected、private)进行检查。

解析动作主要针对类或接口、字段、类方法、接口方法、方法类型、方法句柄和调用点限定符这7类符号引用进行,分别对应于常量池的CONSTANT_Class_info、CON-STANT_Fieldref_info、CONSTANT_Methodref_info、CONSTANT_InterfaceMethodref_info、CONSTANT_MethodType_info、CONSTANT_MethodHandle_info、CONSTANT_Dyna-mic_info和CONSTANT_InvokeDynamic_info 8种常量类型。

阶段五:初始化

类的初始化阶段是类加载过程的最后一个步骤,直到这一阶段,Java虚拟机才真正开始执行类中编写的Java程序代码,将主导权移交给应用程序。

进行准备阶段时,变量已经赋过一次系统要求的初始零值,而在初始化阶段,则会根据程序员通过程序编码制定的主观计划去初始化类变量和其他资源。更简单地说,其实初始化阶段就是执行类构造器clinit()方法的过程。

  • clinit()方法是由编译器自动收集类中的所有类变量的赋值动作和静态语句块(static{}块)中的语句合并产生的,编译器收集的顺序是由语句在源文件中出现的顺序决定的,静态语句块中只能访问到定义在静态语句块之前的变量,定义在它之后的变量,在前面的静态语句块可以赋值,但是不能访问,代码如下:
public class Test{
	static {
        i = 1;   //给变量赋值可以正常通过
        System.out.println(i);  // 编译器会提示“非法向前引用”
    }
    static int i = 2;
}
  • clinit()方法与类的构造函数(即在虚拟机视角中的实例构造器init()方法)不同,它不需要显式地调用父类构造器,Java虚拟机会保证在子类的clinit()方法执行前,父类的clinit()方法已经执行完毕。因此在Java虚拟机中第一个被执行的clinit()方法的类型肯定是java.lang.Object。

  • 由于父类的clinit()方法先执行,也就意味着父类中定义的静态语句块要优先于子类的变量赋值操作。

  • clinit()方法对于类或接口来说并不是必需的,如果一个类中没有静态语句块,也没有对变量的赋值操作,那么编译器可以不为这个类生成clinit()方法。

  • 接口中不能使用静态语句块,但仍然有变量初始化的赋值操作,因此接口与类一样都会生成clinit()方法。但接口与类不同的是,执行接口的clinit()方法不需要先执行父接口的clinit()方法,因为只有当父接口中定义的变量被使用时,父接口才会被初始化。此外,接口的实现类在初始化时也一样不会执行接口的clinit()方法。

  • Java虚拟机必须保证一个类的clinit()方法在多线程环境中被正确地加锁同步,如果多个线程同时去初始化一个类,那么只会有其中一个线程去执行这个类的clinit()方法,其他线程都需要阻塞等待,直到活动线程执行完毕clinit()方法。

你可能感兴趣的:(JVM)