ECCV 2020论文已公布,本届 ECCV 共收到有效投稿5025篇,接收1361篇,其中Oral论文 104 篇,仅占 2%。
本文汇总截止今日所有Oral 论文,其中已经公布完整论文的有 47 篇,按照研究方向进行了初步分类。
这些论文中有二十几篇已经公布了代码,也一并列出了。
比较有意思的是,本文列出的第一篇论文 Quaternion Equivariant Capsule Networks for 3D Point Clouds 曾被 ICLR 2020 拒稿(https://openreview.net/forum?id=B1xtd1HtPS),ECCV 2020 却给了个Oral。
下载所有这些论文请扫码“OpenCV中文网”公众号,后台回复“ECCV2020”,即可收到下载链接。
后续出现的论文,会在 www.52cv.net 持续更新。
(百度“52CV”,即可直达)
3D点云( 3D Point Clouds)
[1].Quaternion Equivariant Capsule Networks for 3D Point Clouds
作者 | Yongheng Zhao, Tolga Birdal, Jan Eric Lenssen, Emanuele Menegatti, Leonidas Guibas, Federico Tombari
单位 | Univ. Padova, TU Munich;斯坦福大学;多特蒙德工业大学等
论文 | https://arxiv.org/abs/1912.12098v2
点云补全和分类
[2].SoftpoolNet: Shape Descriptor for Point Cloud Completion and Classification
点云插值
[3].Intrinsic Point Cloud Interpolation via Dual Latent Space Navigation
作者 | Marie-Julie Rakotosaona, Maks Ovsjanikov
单位 | 巴黎综合理工学院
论文 | https://arxiv.org/abs/2004.01661
神经架构搜索(NAS)
[4].MoSaNAS: Multi-Objective Surrogate-Assisted Neural Architecture Search
[5].S2DNAS: Transforming Static CNN Model for Dynamic Inference via Neural Architecture Search
作者 | Zhihang Yuan, Bingzhe Wu, Zheng Liang, Shiwan Zhao, Weichen Bi, Guangyu Sun
单位 | 北大;IBM Research
论文 | https://arxiv.org/abs/1911.07033
动作识别(Activity Recognition)
[6].Empowering Relational Network by Self-Attention Augmented Conditional Random Fields for Group Activity Recognition
动作定位
[7].Learning to Localize Actions from Moments
语义分割(Semantic Segmentation)
[8].Synthesize then Compare: Detecting Failures and Anomalies for Semantic Segmentation
作者 | Yingda Xia, Yi Zhang, Fengze Liu, Wei Shen, Alan Yuille
单位 | 约翰斯霍普金斯大学
论文 | https://arxiv.org/abs/2003.08440
场景解析-scene parsing
[25].Semantic Flow for Fast and Accurate Scene Parsing
作者 | Xiangtai Li, Ansheng You, Zhen Zhu, Houlong Zhao, Maoke Yang, Kuiyuan Yang, Yunhai Tong
单位 | 北大;华中科技大学;DeepMotion
论文 | https://arxiv.org/abs/2002.10120
代码 | https://github.com/donnyyou/torchcv
弱监督语义分割
[26].Mining Cross-Image Semantics for Weakly Supervised Semantic Segmentation
作者 | Guolei Sun, Wenguan Wang, Jifeng Dai, Luc Van Gool
单位 | 苏黎世联邦理工学院;商汤
论文 | https://arxiv.org/abs/2007.01947
代码 | https://github.com/GuoleiSun/MCIS_wsss(尚未)
生成对抗网络(GAN)
[9].House-GAN: Relational Generative Adversarial Networks for Graph-constrained House Layout Generation
作者 | Nelson Nauata, Kai-Hung Chang, Chin-Yi Cheng, Greg Mori, Yasutaka Furukawa
单位 | 西蒙弗雷泽大学;Autodesk Research
论文 | https://arxiv.org/abs/2003.06988
代码 | https://github.com/ennauata/housegan
[10].ForkGAN: Seeing into the Rainy Night
重写深度生成模型
[11].Rewriting a Deep Generative Model
[12].Aligning and Projecting Images to Class-conditional Generative Networks
无监督草图到照片的图像合成
[13].Unsupervised Sketch-to-Photo Synthesis
作者 | Runtao Liu, Qian Yu, Stella Yu
单位 | 北大;北航/伯克利;伯克利/ICSI
论文 | https://arxiv.org/abs/1909.08313
代码 | https://github.com/rt219/Unpaired-Sketch-to-Photo-Translation
[14].TopoGAN: A Topology-Aware Generative Adversarial Network
运动捕捉
[15].Motion Capture from Internet Videos
数据集 | https://github.com/zju3dv/iMoCap_dataset(即将)
人体姿态估计( Human Pose Estimation)
3D人体姿态估计
[16].End-to-End Estimation of Multi-Person 3D Poses from Multiple Cameras
作者 | Hanyue Tu ,Chunyu Wang ,Wenjun Zeng
单位 | 微软亚洲研究院
论文 | https://www.microsoft.com/en-us/research/publication/end-to-end-estimation-of-multi-person-3d-poses-from-multiple-cameras/
目标检测( Object Detection)
[17].End-to-End Object Detection with Transformers
作者 | Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko
单位 | Facebook AI
论文 | https://arxiv.org/abs/2005.12872
代码 | https://github.com/facebookresearch/detr
[18].Suppress and Balance: A Simple Gated Network for Salient Object Detection
代码 | https://github.com/Xiaoqi-Zhao-DLUT/GateNet-RGB-Saliency(即将)
[19].BorderDet: Border Feature for Dense Object Detection
三维重建( 3D Reconstruction)
[20].Ladybird: Deep Implicit Field Based 3D Reconstruction with Sampling and Symmetry
[21].Coherent full scene 3D reconstruction from a single RGB image
3D人体重建
[22].Combining Implicit Function Learning and Parametric Models for 3D Human Reconstruction
多目标跟踪与分割( MOTS)
[23].Segment as Points for Efficient Online Multi-Object Tracking and Segmentation
作者 | Zhenbo Xu, Wei Zhang, Xiao Tan, Wei Yang, Huan Huang, Shilei Wen, Errui Ding, Liusheng Huang
单位 | 中国科学技术大学;百度
论文 | https://arxiv.org/abs/2007.01550
代码 | https://github.com/detectRecog/PointTrack
实例分割( Instance Segmentation)
[24].Conditional Convolutions for Instance Segmentation
作者 | Zhi Tian, Chunhua Shen, Hao Chen
单位 | 阿德莱德大学
论文 | https://arxiv.org/abs/2003.05664
代码 | https://github.com/aim-uofa/AdelaiDet
视频目标分割
[27].Learning What to Learn for Video Object Segmentation
作者 | Goutam Bhat, Felix Järemo Lawin, Martin Danelljan, Andreas Robinson, Michael Felsberg, Luc Van Gool, Radu Timofte
单位 | 苏黎世联邦理工学院;林雪平大学
论文 | https://arxiv.org/abs/2003.11540
数据集( Dataset )
[28].Fashionpedia: Ontology, Segmentation, and an Attribute Localization Dataset
作者 | Menglin Jia, Mengyun Shi, Mikhail Sirotenko, Yin Cui, Claire Cardie, Bharath Hariharan, Hartwig Adam, Serge Belongie
单位 | 康奈尔大学;Cornell Tech;谷歌;Hearst Magazines
论文 | https://arxiv.org/abs/2004.12276
数据集 | https://fashionpedia.github.io/home/index.html
[29].Deep Fashion3D: A Dataset and Benchmark for 3D Garment Reconstruction from Single-view Images
作者 | Heming Zhu, Yu Cao, Hang Jin, Weikai Chen, Dong Du, Zhangye Wang, Shuguang Cui, Xiaoguang Han
单位 | 香港中文大学;深圳市大数据研究院;浙江大学;西安电子科技大学;腾讯-美国
论文 | https://arxiv.org/abs/2003.12753
主页 | https://kv2000.github.io/2020/03/25/deepFashion3DRevisited/
[30].SIZER: A Dataset and Model for Parsing 3D Clothing and Learning Size Sensitive 3D Clothing
[31].Mapillary Planet-Scale Depth Dataset
带有阅读理解功能的图像字幕数据集
[32].TextCaps: a Dataset for Image Captioning with Reading Comprehension
作者 | Oleksii Sidorov, Ronghang Hu, Marcus Rohrbach, Amanpreet Singh
单位 | FAIR;伯克利
论文 | https://arxiv.org/abs/2003.12462
代码 | https://github.com/facebookresearch/mmf/tree/project
/m4c/projects/M4C_Captioner
主页 | https://textvqa.org/textcaps
图像字幕( Image Captioning )
[33].Compare and Reweight: Distinctive Image Captioning Using Similar Images Sets
人体运动预测( Human Motion Prediction )
[34].Long-term Human Motion Prediction with Scene Context
作者 | Zhe Cao , Hang Gao , Karttikeya Mangalam , Qi-Zhi Cai , Minh Vo , and Jitendra Malik
单位 | 伯克利;南京大学;Facebook Reality Lab
论文 | https://people.eecs.berkeley.edu/~zhecao/hmp/preprint.pdf
主页 | https://people.eecs.berkeley.edu/~zhecao/hmp/index.html
场景识别
[35].ReferIt3D: Neural Listeners for Fine-Grained 3D Object Identification in Real-World Scenes
视图合成
[36].NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
作者 | Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, Ren Ng
单位 | 伯克利;谷歌;加利福尼亚大学圣迭戈分校
论文 | https://arxiv.org/abs/2003.08934
代码 | https://github.com/bmild/nerf
主页 | https://www.matthewtancik.com/nerf
6DoF视频视图合成
[37].MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images
深度估计(Depth Estimation)
[38].Du^2Net: Learning Depth Estimation from Dual-Cameras and Dual-Pixels
作者 | Yinda Zhang, Neal Wadhwa, Sergio Orts-Escolano, Christian Häne, Sean Fanello, Rahul Garg
单位 | 谷歌
论文 | https://arxiv.org/abs/2003.14299
少样本学习(Few-Shot learning)
[39].Model-Agnostic Boundary-Adversarial Sampling for Test-Time Generalization in Few-Shot learning
[40].Prototype Rectification for Few-Shot Learning
作者 | Jinlu Liu, Liang Song, Yongqiang Qin
单位 | 创新奇智
论文 | https://arxiv.org/abs/1911.10713
无监督学习(Unsupervised learning)
[41].Content-Aware Unsupervised Deep Homography Estimation
作者 | Jirong Zhang, Chuan Wang, Shuaicheng Liu, Lanpeng Jia, Jue Wang, Ji Zhou
单位 | 电子科技大学
论文 | https://arxiv.org/abs/1909.05983
代码 | https://github.com/JirongZhang/DeepHomography
[42].Visual Memorability for Robotic Interestingness Prediction via Unsupervised Online Learning
作者 | Chen Wang, Wenshan Wang, Yuheng Qiu, Yafei Hu, Sebastian Scherer
单位 | 卡内基梅隆大学
论文 | https://arxiv.org/abs/2005.08829v1
视频 | https://www.youtube.com/watch?v=Gy15Hx6qiGE
监督学习/自监督/半监督
[43].Learning Feature Descriptors using Camera Pose Supervision
作者 | Qianqian Wang, Xiaowei Zhou, Bharath Hariharan, Noah Snavely
单位 | 康奈尔大学;Cornell Tech;浙江大学
论文 | https://arxiv.org/abs/2004.13324
主页 | https://qianqianwang68.github.io/DescfromPose/
方法:
结果:
[44].Appearance Consensus Driven Self-Supervised Human Mesh Recovery
[45].TCGM: An Information-Theoretic Framework for Semi-Supervised Multi-Modality Learning
人物交互(Human-Object Interaction)
[46].Forecasting Human-Object Interaction: Joint Prediction of Motor Attention and Actions in First Person Video
作者 | Miao Liu, Siyu Tang, Yin Li, James Rehg
单位 | 佐治亚理工学院;威斯康星大学麦迪逊分校等
论文 | https://arxiv.org/abs/1911.10967
人员重识别(Person Re-Identification )
[47].Joint Disentangling and Adaptation for Cross-Domain Person Re-Identification
[48].Appearance-Preserving 3D Convolution for Video-based Person Re-identification
车辆重识别(Vehicle Re-Identification )
[49].Orientation-aware Vehicle Re-identification with Semantics-guided Part Attention Network
视觉问答(VQA )
[50].A Competence-aware Curriculum for Visual Concepts Learning via Question Answering
作者 | Qing Li, Siyuan Huang, Yining Hong, Song-Chun Zhu
单位 | 加州大学洛杉矶分校
论文 | https://arxiv.org/abs/2007.01499
视频压缩(Video Compression )
[51].Improving Deep Video Compression by Resolution-adaptive Flow Coding
[52].Content Adaptive and Error Propagation Aware Deep Video Compression
作者 | Guo Lu, Chunlei Cai, Xiaoyun Zhang, Li Chen, Wanli Ouyang, Dong Xu, Zhiyong Gao
单位 | 上海交通大学;悉尼大学;悉尼大学/商汤CV研究小组
论文 | https://arxiv.org/abs/2003.11282
图像恢复(Image Restoration)
[53].Exploiting Deep Generative Prior for Versatile Image Restoration and Manipulation
作者 | Xingang Pan, Xiaohang Zhan, Bo Dai, Dahua Lin, Chen Change Loy, Ping Luo
单位 | 香港中文大学;南洋理工大学 ;香港大学
论文 | https://arxiv.org/abs/2003.13659
代码 | https://github.com/XingangPan/deep-generative-prior
图像修复(inpainting)
[54].Rethinking image inpainting via a mutual encoder-decoder with feature equalization
代码 | https://github.com/KumapowerLIU/ECCV2020oralRethinking-Image-Inpainting-via-a-Mutual-Encoder-Decoder-with-Feature-Equalizations(尚未)
图像检索(Image Retrieval)
[55].ExchNet: A Unified Hashing Network for Large-Scale Fine-Grained Image Retrieval
对抗学习 + 图像检索
[56].Targeted Attack for Deep Hashing based Retrieval
作者 | Jiawang Bai, Bin Chen, Yiming Li, Dongxian Wu, Weiwei Guo, Shu-tao Xia, En-hui Yang
单位 | 清华大学;鹏城实验室;Vivo;滑铁卢大学
论文 | https://arxiv.org/abs/2004.07955
图像检索,深度局部特征聚合
[57].Learning and aggregating deep local descriptors for instance-level recognition
遥感与航空影像处理与识别
[58].Synthesis and Completion of Facades from Satellite Imagery
计算成像
成像技术
[59].Diffraction Line Imaging
光场重建
[60].Deep Spatial-angular Regularization for Compressive Light Field Reconstruction over Coded Apertures
光流估计
[61].RAFT: Recurrent All-Pairs Field Transforms for Optical Flow
作者 | Zachary Teed, Jia Deng
单位 | 普林斯顿大学
论文 | https://arxiv.org/abs/2003.12039
代码 | https://github.com/princeton-vl/RAFT
[62].What Matters in Unsupervised Optical Flow
作者 | Rico Jonschkowski, Austin Stone, Jonathan T. Barron, Ariel Gordon, Kurt Konolige, Anelia Angelova
单位 | 谷歌
论文 | https://arxiv.org/abs/2006.04902
代码 | https://github.com/google-research/google-research/tree/master/uflow
PnP问题求解
[63].Solving the Blind Perspective-n-Point Problem End-To-End With Robust Differentiable Geometric Optimization
[64].A Consistently Fast and Globally Optimal Solution to the Perspective-n-Point Problem
网络剪枝、量化、加速
深度神经网络的训练后分段线性量化
[65].Post-Training Piecewise Linear Quantization for Deep Neural Networks
作者 | Jun Fang, Ali Shafiee, Hamzah Abdel-Aziz, David Thorsley, Georgios Georgiadis, Joseph Hassoun
单位 | 三星;微软
论文 | https://arxiv.org/abs/2002.00104
网络剪枝
[66].EagleEye: Fast Sub-net Evaluation for Efficient Neural Network Pruning
作者 | Bailin Li, Bowen Wu, Jiang Su, Guangrun Wang, Liang Lin
单位 | Dark Matter AI Inc;中山大学
论文 | https://arxiv.org/abs/2007.02491
代码 | https://github.com/anonymous47823493/EagleEye
网络推断加速,使用采样-插值方法减少CNN空间信息冗余
[67].Spatially Adaptive Inference with Stochastic Feature Sampling and Interpolation
作者 | Zhenda Xie, Zheng Zhang, Xizhou Zhu, Gao Huang, Stephen Lin
单位 | 清华大学;微软亚洲研究院;中国科学技术大学
论文 | https://arxiv.org/abs/2003.08866
网络优化、正则化
优化技术
[68].Gradient Centralization: A New Optimization Technique for Deep Neural Networks
作者 | Hongwei Yong, Jianqiang Huang, Xiansheng Hua, Lei Zhang
单位 | 香港理工大学;阿里达摩院
论文 | https://arxiv.org/abs/2004.01461
代码 | https://github.com/Yonghongwei/Gradient-Centralization
深度神经网络的逐层条件分析
[69].Layer-wise Conditioning Analysis in Exploring the Learning Dynamics of DNNs
作者 | Lei Huang, Jie Qin, Li Liu, Fan Zhu, Ling Shao
单位 | IIAI
论文 | https://arxiv.org/abs/2002.10801
代码 | https://github.com/huangleiBuaa/LayerwiseCA
[70].Regularization with Latent Space Virtual Adversarial Training
Structure-from-Motion
[71].DeepSFM: Structure From Motion Via Deep Bundle Adjustment
作者 | Xingkui Wei, Yinda Zhang, Zhuwen Li, Yanwei Fu, Xiangyang Xue
单位 | 复旦大学;谷歌;Nuro, Inc
论文 | https://arxiv.org/abs/1912.09697
[72].Privacy Preserving Structure-from-Motion
局部特征提取
局部特征提精
[73].Multi-View Optimization of Local Feature Geometry
作者 | Mihai Dusmanu, Johannes L. Schönberger, Marc Pollefeys
单位 | 苏黎世联邦理工学院;微软
论文 | https://arxiv.org/abs/2003.08348
代码 | https://github.com/mihaidusmanu/local-feature-refinement
局部特征描述
[74].Online Invariance Selection for Local Feature Descriptors
人脸
基于模型的密集人脸配准技术
[75]."Look Ma, no landmarks!" - Unsupervised, model-based dense face alignment
人脸老化
[76].Hierarchical Face Aging through Disentangled Latent Characteristics
自动驾驶
人类活动预测
[77].Adversarial Generative Grammars for Human Activity Prediction
运动预测
[78].Learning Lane Graph Representations for Motion Forecasting
自动驾驶
车辆通信的联合感知与预测
[79].V2VNet: Vehicle-to-Vehicle Communication for Joint Perception and Prediction
作者主页 | https://zswang666.github.io/#(未公布)
轨迹预测
[80].It is not the Journey but the Destination: Endpoint Conditioned Trajectory Prediction
作者 | Karttikeya Mangalam, Harshayu Girase, Shreyas Agarwal, Kuan-Hui Lee, Ehsan Adeli, Jitendra Malik, Adrien Gaidon
单位 | 伯克利;丰田;斯坦福大学
论文 | https://arxiv.org/abs/2004.02025
主页 | https://karttikeya.github.io/publication/htf/
代码 | 即将
立体匹配
[81].Domain-invariant Stereo Matching Networks
作者 | Feihu Zhang, Xiaojuan Qi, Ruigang Yang, Victor Prisacariu, Benjamin Wah, Philip Torr
单位 | 牛津大学;百度;香港中文大学
论文 | https://arxiv.org/abs/1911.13287
代码 | https://github.com/feihuzhang/DSMNet
单RGB图像的手部网格建模
[82].DeepHandMesh: Weakly-supervised Deep Encoder-Decoder Framework for High-fidelity Hand Mesh Modeling from a Single RGB Image
流式图像理解
[83].Towards Streaming Image Understanding
作者 | Mengtian Li, Yu-Xiong Wang, Deva Ramanan
单位 | 卡内基梅隆;Argo AI
论文 | https://arxiv.org/abs/2005.10420
主页 | https://www.cs.cmu.edu/~mengtial/proj/streaming/
度量保留的可变形3D形状表示
[84].LIMP: Learning Latent Shape Representations with Metric Preservation Priors
作者 | Luca Cosmo, Antonio Norelli, Oshri Halimi, Ron Kimmel, Emanuele Rodolà
单位 | 罗马大学;University of Lugano;以色列理工学院
论文 | https://arxiv.org/abs/2003.12283
开放集识别
[85].Hybrid Models for Open Set Recognition
作者 | Hongjie Zhang, Ang Li, Jie Guo, Yanwen Guo
单位 | 南京大学;DeepMind
论文 | https://arxiv.org/abs/2003.12506
3D表面拟合
[86].DeepFit: 3D Surface Fitting by Neural Network Weighted Least Squares
作者 | Yizhak Ben-Shabat, Stephen Gould
单位 | 澳大利亚国立大学
论文 | https://arxiv.org/abs/2003.10826
6D物体姿态估计(6D Object Pose Estimation)
[87].Self6D: Self-Supervised Monocular 6D Object Pose Estimation
作者 | Gu Wang, Fabian Manhardt, Jianzhun Shao, Xiangyang Ji, Nassir Navab, Federico Tombari
单位 | 清华大学;慕尼黑工业大学;谷歌
论文 | https://arxiv.org/abs/2004.06468
图像缩放 (Image Rescaling)
[88].Invertible Image Rescaling
作者 | Mingqing Xiao, Shuxin Zheng, Chang Liu, Yaolong Wang, Di He, Guolin Ke, Jiang Bian, Zhouchen Lin, Tie-Yan Liu
单位 | 北大;微软亚洲研究院;多伦多大学
论文 | https://arxiv.org/abs/2005.05650
代码 | https://github.com/pkuxmq/Invertible-Image-Rescaling(即将)
解读 | https://zhuanlan.zhihu.com/p/150340687
远程生理信号监控
远程生理测量:通过交叉验证特征解耦的方法
[89].Video-based Remote Physiological Measurement via Cross-verified Feature Disentangling
网络结构设计
自适应网络宽度和分辨率学习
[90].MutualNet: Adaptive ConvNet via Mutual Learning from Network Width and Resolution
作者 | Taojiannan Yang, Sijie Zhu, Chen Chen, Shen Yan, Mi Zhang, Andrew Willis
单位 | 北卡罗来纳大学夏洛特分校;密歇根州立大学
论文 | https://arxiv.org/abs/1909.12978
代码 | https://github.com/taoyang1122/MutualNet
其它
[91].In-Home Daily-Life Captioning Using Radio Signals
[92].Self-Challenging Improves Cross-Domain Generalization
作者 | Zeyi Huang, Haohan Wang, Eric P. Xing, Dong Huang
单位 | 卡内基梅隆大学
论文 | https://arxiv.org/abs/2007.02454
多任务学习增强对抗鲁棒性
[93].Multi-task Learning Increases Adversarial Robustness
[94].Efficient Model Fitting by Combining Lifted Optimization with Phong Surface Models
从单图像学习立体信息
[95].Learning Stereo from Single Images
[96].Towards Automated Testing and Robustification by Semantic Adversarial Data Generation
持续学习-Continual Learning
[97].Greedy Sampler and Dumb Learner: A Surprisingly Effective Approach for Continual Learning
可解释CNN
[98].Training Interpretable Convolutional Neural Networks by Differentiating Class-specific Filters
跨域级联深度翻译
[99].Cross-Domain Cascaded Deep Translation
使神经网络能够抵抗各种图像损坏的简单方法
[100].A simple way to make neural networks robust against diverse image corruptions
使用自然语言描述纹理
[101].Describing Textures using Natural Language
具有推理能力的注意力模型
[102].AiR: Attention with Reasoning Capability
代码 | https://github.com/szzexpoi/AiR
[103].Crowdsampling the Plenoptic Function
[104].恢复视频监控的可见光颜色
Learn to Recover Visible Color for Video Surveillance in a Day
备注:ECCV
ECCV交流群
讨论关注CV领域的学术论文撰写、投稿、期刊会议等资讯
若已为CV君其他账号好友请直接私信。
OpenCV中文网
微信号 : iopencv
QQ群:805388940
微博/知乎:@我爱计算机视觉
网站:www.52cv.net