ORBSLAM2 特征点提取代码注释

#include 
#include 
#include 
#include 
#include 
#include 

#include "ORBextractor.h"
#include 


using namespace cv;
using namespace std;

namespace ORB_SLAM2
{

const int PATCH_SIZE = 31;
const int HALF_PATCH_SIZE = 15;
const int EDGE_THRESHOLD = 19; //边界阈值


//灰度质心法(IC)计算特征的旋转
static float IC_Angle(const Mat& image, Point2f pt,  const vector & u_max)
{
    int m_01 = 0, m_10 = 0;

    const uchar* center = &image.at (cvRound(pt.y), cvRound(pt.x));  //cvRound 返回跟参数最接近的整数值;

//我们要在一个圆域中算出m10和m01,计算步骤是先算出中间红线的m10,然后在平行于x轴算出m10和m01,一次计算相当于图像中的同个颜色的两个line。
    // Treat the center line differently, v=0   横坐标:-15-----+15
    for (int u = -HALF_PATCH_SIZE; u <= HALF_PATCH_SIZE; ++u)
        m_10 += u * center[u];

    // Go line by line in the circuI853lar patch
    int step = (int)image.step1();    //opencv中概念,计算每行的元素个数
    for (int v = 1; v <= HALF_PATCH_SIZE; ++v)
    {
        // Proceed over the two lines
        int v_sum = 0;
        int d = u_max[v];
        for (int u = -d; u <= d; ++u)
        {
            int val_plus = center[u + v*step], val_minus = center[u - v*step];
            v_sum += (val_plus - val_minus);
            m_10 += u * (val_plus + val_minus);
        }
        m_01 += v * v_sum;
    }
//返回计算的角度
    return fastAtan2((float)m_01, (float)m_10);
}


//弧度制与角度的转换
const float factorPI = (float)(CV_PI/180.f);

//计算描述子
static void computeOrbDescriptor(const KeyPoint& kpt,
                                 const Mat& img, const Point* pattern,
                                 uchar* desc)
{
    float angle = (float)kpt.angle*factorPI;
    float a = (float)cos(angle), b = (float)sin(angle);

    const uchar* center = &img.at(cvRound(kpt.pt.y), cvRound(kpt.pt.x));
    const int step = (int)img.step;

    #define GET_VALUE(idx) \
        center[cvRound(pattern[idx].x*b + pattern[idx].y*a)*step + \
               cvRound(pattern[idx].x*a - pattern[idx].y*b)]


    for (int i = 0; i < 32; ++i, pattern += 16)
    {
       。。。
    }

    #undef GET_VALUE
}


static int bit_pattern_31_[256*4] =
{
   。。。。
};

ORBextractor::ORBextractor(int _nfeatures, float _scaleFactor, int _nlevels,
         int _iniThFAST, int _minThFAST):
    nfeatures(_nfeatures), scaleFactor(_scaleFactor), nlevels(_nlevels),
    iniThFAST(_iniThFAST), minThFAST(_minThFAST)
{
/***********确定每一层的特征点数,采用等比数列**************/
//定义每一层的尺度和逆尺度
    mvScaleFactor.resize(nlevels);
    mvLevelSigma2.resize(nlevels);
    mvScaleFactor[0]=1.0f;
    mvLevelSigma2[0]=1.0f;
    for(int i=1; i= vmin; --v)
    {
        while (umax[v0] == umax[v0 + 1])
            ++v0;
        umax[v] = v0;
        ++v0;
    }
}


//计算每个关键点的角度
static void computeOrientation(const Mat& image, vector& keypoints, const vector& umax)
{
    for (vector::iterator keypoint = keypoints.begin(),
         keypointEnd = keypoints.end(); keypoint != keypointEnd; ++keypoint)
    {
        keypoint->angle = IC_Angle(image, keypoint->pt, umax);
    }
}

void ExtractorNode::DivideNode(ExtractorNode &n1, ExtractorNode &n2, ExtractorNode &n3, ExtractorNode &n4)
{
    const int halfX = ceil(static_cast(UR.x-UL.x)/2);
    const int halfY = ceil(static_cast(BR.y-UL.y)/2);

    //Define boundaries of childs
    n1.UL = UL;
    n1.UR = cv::Point2i(UL.x+halfX,UL.y);
    n1.BL = cv::Point2i(UL.x,UL.y+halfY);
    n1.BR = cv::Point2i(UL.x+halfX,UL.y+halfY);
    n1.vKeys.reserve(vKeys.size());

    n2.UL = n1.UR;
    n2.UR = UR;
    n2.BL = n1.BR;
    n2.BR = cv::Point2i(UR.x,UL.y+halfY);
    n2.vKeys.reserve(vKeys.size());

    n3.UL = n1.BL;
    n3.UR = n1.BR;
    n3.BL = BL;
    n3.BR = cv::Point2i(n1.BR.x,BL.y);
    n3.vKeys.reserve(vKeys.size());

    n4.UL = n3.UR;
    n4.UR = n2.BR;
    n4.BL = n3.BR;
    n4.BR = BR;
    n4.vKeys.reserve(vKeys.size());

    //Associate points to childs
    for(size_t i=0;iN,则说明将所有节点再分裂一次可以达到要求。
//vSizeAndPointerToNode 是前面分裂出来的子节点(n1, n2, n3, n4)中可以分裂的节点。
//按照它们特征点的排序,先从特征点多的开始分裂,分裂的结果继续存储在 lNodes 中。每分裂一个节点都会进行一次判断,
//如果 lNodes 中的节点数量大于所需要的特征点数量,退出整个 while(!bFinish) 循环,如果进行了一次分裂,
//并没有增加节点数量,不玩了,退出整个 while(!bFinish) 循环。取出每一个节点(每个区域)对应的最大响应点,即我们确定的特征点。


vector ORBextractor::DistributeOctTree(const vector& vToDistributeKeys, const int &minX,
                                       const int &maxX, const int &minY, const int &maxY, const int &N, const int &level)
{
    // Compute how many initial nodes 计算有多少初始节点  
    const int nIni = round(static_cast(maxX-minX)/(maxY-minY));  //round四舍五入取整,水平划分格子的数量

    const float hX = static_cast(maxX-minX)/nIni;       //水平划分格子的宽度

    list lNodes;

    vector vpIniNodes;
    vpIniNodes.resize(nIni);

    for(int i=0; i(i),0);
        ni.UR = cv::Point2i(hX*static_cast(i+1),0);
        ni.BL = cv::Point2i(ni.UL.x,maxY-minY);
        ni.BR = cv::Point2i(ni.UR.x,maxY-minY);
        ni.vKeys.reserve(vToDistributeKeys.size());

        lNodes.push_back(ni);
        vpIniNodes[i] = &lNodes.back();
    }

    //Associate points to childs
    for(size_t i=0;ivKeys.push_back(kp);
    }

    list::iterator lit = lNodes.begin();

    while(lit!=lNodes.end())
    {
        if(lit->vKeys.size()==1)
        {
            lit->bNoMore=true;
            lit++;
        }
        else if(lit->vKeys.empty())
            lit = lNodes.erase(lit);
        else
            lit++;
    }

    bool bFinish = false;

    int iteration = 0;

    vector > vSizeAndPointerToNode;
    vSizeAndPointerToNode.reserve(lNodes.size()*4);

    // 根据兴趣点分布,利用N叉树方法对图像进行划分区域
    while(!bFinish)
    {
        iteration++;

        int prevSize = lNodes.size();

        lit = lNodes.begin();

        int nToExpand = 0;

        vSizeAndPointerToNode.clear();

        // 将目前的子区域经行划分
        while(lit!=lNodes.end())
        {
            if(lit->bNoMore)
            {
                // If node only contains one point do not subdivide and continue
                lit++;
                continue;
            }
            else
            {
                // If more than one point, subdivide
                ExtractorNode n1,n2,n3,n4;
                lit->DivideNode(n1,n2,n3,n4); // 再细分成四个子区域

                // Add childs if they contain points
                if(n1.vKeys.size()>0)
                {
                    lNodes.push_front(n1);                    
                    if(n1.vKeys.size()>1)
                    {
                        nToExpand++;
                        vSizeAndPointerToNode.push_back(make_pair(n1.vKeys.size(),&lNodes.front()));
                        lNodes.front().lit = lNodes.begin();
                    }
                }
                if(n2.vKeys.size()>0)
                {
                    lNodes.push_front(n2);
                    if(n2.vKeys.size()>1)
                    {
                        nToExpand++;
                        vSizeAndPointerToNode.push_back(make_pair(n2.vKeys.size(),&lNodes.front()));
                        lNodes.front().lit = lNodes.begin();
                    }
                }
                if(n3.vKeys.size()>0)
                {
                    lNodes.push_front(n3);
                    if(n3.vKeys.size()>1)
                    {
                        nToExpand++;
                        vSizeAndPointerToNode.push_back(make_pair(n3.vKeys.size(),&lNodes.front()));
                        lNodes.front().lit = lNodes.begin();
                    }
                }
                if(n4.vKeys.size()>0)
                {
                    lNodes.push_front(n4);
                    if(n4.vKeys.size()>1)
                    {
                        nToExpand++;
                        vSizeAndPointerToNode.push_back(make_pair(n4.vKeys.size(),&lNodes.front()));
                        lNodes.front().lit = lNodes.begin();
                    }
                }

                lit=lNodes.erase(lit);
                continue;
            }
        }       

        // Finish if there are more nodes than required features
        // or all nodes contain just one point
        if((int)lNodes.size()>=N || (int)lNodes.size()==prevSize)
        {
            bFinish = true;
        }
        // 当再划分之后所有的Node数大于要求数目时
        else if(((int)lNodes.size()+nToExpand*3)>N)
        {

            while(!bFinish)
            {

                prevSize = lNodes.size();

                vector > vPrevSizeAndPointerToNode = vSizeAndPointerToNode;
                vSizeAndPointerToNode.clear();

                // 对需要划分的部分进行排序, 即对兴趣点数较多的区域进行划分
                sort(vPrevSizeAndPointerToNode.begin(),vPrevSizeAndPointerToNode.end());
                for(int j=vPrevSizeAndPointerToNode.size()-1;j>=0;j--)
                {
                    ExtractorNode n1,n2,n3,n4;
                    vPrevSizeAndPointerToNode[j].second->DivideNode(n1,n2,n3,n4);

                    // Add childs if they contain points
                    if(n1.vKeys.size()>0)
                    {
                        lNodes.push_front(n1);
                        if(n1.vKeys.size()>1)
                        {
                            vSizeAndPointerToNode.push_back(make_pair(n1.vKeys.size(),&lNodes.front()));
                            lNodes.front().lit = lNodes.begin();
                        }
                    }
                    if(n2.vKeys.size()>0)
                    {
                        lNodes.push_front(n2);
                        if(n2.vKeys.size()>1)
                        {
                            vSizeAndPointerToNode.push_back(make_pair(n2.vKeys.size(),&lNodes.front()));
                            lNodes.front().lit = lNodes.begin();
                        }
                    }
                    if(n3.vKeys.size()>0)
                    {
                        lNodes.push_front(n3);
                        if(n3.vKeys.size()>1)
                        {
                            vSizeAndPointerToNode.push_back(make_pair(n3.vKeys.size(),&lNodes.front()));
                            lNodes.front().lit = lNodes.begin();
                        }
                    }
                    if(n4.vKeys.size()>0)
                    {
                        lNodes.push_front(n4);
                        if(n4.vKeys.size()>1)
                        {
                            vSizeAndPointerToNode.push_back(make_pair(n4.vKeys.size(),&lNodes.front()));
                            lNodes.front().lit = lNodes.begin();
                        }
                    }

                    lNodes.erase(vPrevSizeAndPointerToNode[j].second->lit);

                    if((int)lNodes.size()>=N)
                        break;
                }

                if((int)lNodes.size()>=N || (int)lNodes.size()==prevSize)
                    bFinish = true;

            }
        }
    }

    // Retain the best point in each node
    // 保留每个区域响应值最大的一个兴趣点
    vector vResultKeys;
    vResultKeys.reserve(nfeatures);
    for(list::iterator lit=lNodes.begin(); lit!=lNodes.end(); lit++)
    {
        vector &vNodeKeys = lit->vKeys;
        cv::KeyPoint* pKP = &vNodeKeys[0];
        float maxResponse = pKP->response;

        for(size_t k=1;kmaxResponse)
            {
                pKP = &vNodeKeys[k];
                maxResponse = vNodeKeys[k].response;
            }
        }

        vResultKeys.push_back(*pKP);
    }

    return vResultKeys;
}



//对影像金字塔中的每一层图像进行特征点的计算。具体计算过程是将影像网格分割成小区域,每一个小区域独立使用FAST角点检测
//检测完成之后使用DistributeOcTree函数对检测到所有的角点进行筛选,使得角点分布均匀
void ORBextractor::ComputeKeyPointsOctTree(vector >& allKeypoints)
{
    allKeypoints.resize(nlevels);

    const float W = 30;//窗口大小

    // 对每一层图像做处理
    for (int level = 0; level < nlevels; ++level)   //计算边界
    {
        const int minBorderX = EDGE_THRESHOLD-3; //裁边19-3=16,
        const int minBorderY = minBorderX;
        const int maxBorderX = mvImagePyramid[level].cols-EDGE_THRESHOLD+3;
        const int maxBorderY = mvImagePyramid[level].rows-EDGE_THRESHOLD+3;

        vector vToDistributeKeys;
        vToDistributeKeys.reserve(nfeatures*10);

//宽度和高度
        const float width = (maxBorderX-minBorderX);
        const float height = (maxBorderY-minBorderY);

//宽高方向的网格数量
        const int nCols = width/W;
        const int nRows = height/W;

//网格的宽与高
		const int wCell = ceil(width/nCols);
        const int hCell = ceil(height/nRows);


//遍历每一个窗口
		for(int i=0; i=maxBorderY-3)
                continue;

//最大Y超出边界就使用计算最宽的边界
			if(maxY>maxBorderY)
                maxY = maxBorderY;

//计算每列的位置
            for(int j=0; j=maxBorderX-6)
                    continue;
                if(maxX>maxBorderX)
                    maxX = maxBorderX;

                // FAST提取兴趣点, 自适应阈值
                vector vKeysCell;
                FAST(mvImagePyramid[level].rowRange(iniY,maxY).colRange(iniX,maxX),
                     vKeysCell,iniThFAST,true);

//如果没有找到FAST特征点,就降低阈值重新计算
                if(vKeysCell.empty())
                {
                    FAST(mvImagePyramid[level].rowRange(iniY,maxY).colRange(iniX,maxX),
                         vKeysCell,minThFAST,true);
                }

//找到特征点,就将其放到vToDistributeKeys
				if(!vKeysCell.empty())
                {
                    for(vector::iterator vit=vKeysCell.begin(); vit!=vKeysCell.end();vit++)
                    {
                        (*vit).pt.x+=j*wCell;
                        (*vit).pt.y+=i*hCell;
                        vToDistributeKeys.push_back(*vit);
                    }
                }

            }
        }

        vector & keypoints = allKeypoints[level];
        keypoints.reserve(nfeatures);

        // 根据mnFeaturesPerLevel,即该层的兴趣点数,对特征点进行剔除,采用Harris角点的score进行排序
        keypoints = DistributeOctTree(vToDistributeKeys, minBorderX, maxBorderX,
                                      minBorderY, maxBorderY,mnFeaturesPerLevel[level], level);

        const int scaledPatchSize = PATCH_SIZE*mvScaleFactor[level];

        // Add border to coordinates and scale information
        const int nkps = keypoints.size();
        for(int i=0; i > &allKeypoints)
{
    allKeypoints.resize(nlevels);

    float imageRatio = (float)mvImagePyramid[0].cols/mvImagePyramid[0].rows;//图像纵横比

    for (int level = 0; level < nlevels; ++level)
    {
        const int nDesiredFeatures = mnFeaturesPerLevel[level];

        const int levelCols = sqrt((float)nDesiredFeatures/(5*imageRatio)); //论文中提到的每个网格5个点吗?
        const int levelRows = imageRatio*levelCols;

//得到每一层图像进行特征检测区域的上下两个坐标
        const int minBorderX = EDGE_THRESHOLD;
        const int minBorderY = minBorderX;
        const int maxBorderX = mvImagePyramid[level].cols-EDGE_THRESHOLD;
        const int maxBorderY = mvImagePyramid[level].rows-EDGE_THRESHOLD;

//将待检测区域划分为格子的行列个数
        const int W = maxBorderX - minBorderX;
        const int H = maxBorderY - minBorderY;
        const int cellW = ceil((float)W/levelCols);
        const int cellH = ceil((float)H/levelRows);

        const int nCells = levelRows*levelCols;
        const int nfeaturesCell = ceil((float)nDesiredFeatures/nCells);//每一个cell中特征点的个数


//Vector v(n,i),向量V中含有n个值为i 的元素       			means cellKeypoint has levelRows层,每一层中又有levelCols层,均初始化为0
        vector > > cellKeyPoints(levelRows, vector >(levelCols));

        vector > nToRetain(levelRows,vector(levelCols,0));
        vector > nTotal(levelRows,vector(levelCols,0));
        vector > bNoMore(levelRows,vector(levelCols,false));
        vector iniXCol(levelCols);
        vector iniYRow(levelRows);
        int nNoMore = 0;
        int nToDistribute = 0;


        float hY = cellH + 6;

        for(int i=0; i iniYRow(levelRows)

            if(i == levelRows-1)//如果循环到最后一个
            {
                hY = maxBorderY+3-iniY;//hY=3+Ymax-iniY=3+Ymax-(Ymin+(levelRows-1)*cellH -3)=6+Ymax-Ymin-H+cellH=cellH+6  
                if(hY<=0)         //hY牵扯到后面cellimage的大小 范围从iniY到 iniY+hY,不可能为负值
                    continue;     //continue 只管for、while,不看if,不管多少if都直接无视;如果小于直接跳出本次循环,根据上一个注释的式子,正常是不会小于的 
            }

            float hX = cellW + 6;

            for(int j=0; jnfeaturesCell)    //网格中的关键点比需要的要多
                {
                    nToRetain[i][j] = nfeaturesCell;    //保存预先计算好的关键点
                    bNoMore[i][j] = false;
                }
                else
                {
                    nToRetain[i][j] = nKeys;
                    nToDistribute += nfeaturesCell-nKeys;
                    bNoMore[i][j] = true;
                    nNoMore++;
                }

            }
        }


        // Retain by score  如果 总共的离散点数大于0并且 未达到阈值的cell数目比总共的格网数小;直到不需要离散 不需要加点为止  

        while(nToDistribute>0 && nNoMorenNewFeaturesCell)	//总数目甚至比新的要求的点数还要多(当所有cell都执行这个条件语句,while循环就可以终止了) 
                        {
                            nToRetain[i][j] = nNewFeaturesCell;//只保存新要求的点的数目即可  
                            bNoMore[i][j] = false;
                        }
                        else
                        {
                            nToRetain[i][j] = nTotal[i][j];
                            nToDistribute += nNewFeaturesCell-nTotal[i][j];//还要离散的点的数目
                            bNoMore[i][j] = true;   //还需要在加点
                            nNoMore++;
                        }
                    }
                }
            }
        }

        vector & keypoints = allKeypoints[level];
        keypoints.reserve(nDesiredFeatures*2);

        const int scaledPatchSize = PATCH_SIZE*mvScaleFactor[level];

        // Retain by score and transform coordinates	换算特征点真实位置(添加边界值),添加特征点的尺度信息
        for(int i=0; i &keysCell = cellKeyPoints[i][j];
                KeyPointsFilter::retainBest(keysCell,nToRetain[i][j]);//保存最佳点
                if((int)keysCell.size()>nToRetain[i][j])
                    keysCell.resize(nToRetain[i][j]);


                for(size_t k=0, kend=keysCell.size(); knDesiredFeatures)		
        {
            KeyPointsFilter::retainBest(keypoints,nDesiredFeatures);
            keypoints.resize(nDesiredFeatures);
        }
    }

    // and compute orientations
    for (int level = 0; level < nlevels; ++level)
        computeOrientation(mvImagePyramid[level], allKeypoints[level], umax);
}


//计算描述子
static void computeDescriptors(const Mat& image, vector& keypoints, Mat& descriptors,
                               const vector& pattern)
{
    descriptors = Mat::zeros((int)keypoints.size(), 32, CV_8UC1);

    for (size_t i = 0; i < keypoints.size(); i++)
        computeOrbDescriptor(keypoints[i], image, &pattern[0], descriptors.ptr((int)i));
}


//输入的变量
// _image:获取的灰度图像
// _mask:掩码
// _keypoints:关键点
// _descriptors:描述子
//括号运算符输入图像,并且传入引用参数_keypoints,_descriptors用于计算得到的特征点及其描述子
// 这种设计使得只需要构造一次ORBextractor就可以为为所有图像生成特征点
void ORBextractor::operator()( InputArray _image, InputArray _mask, vector& _keypoints,
                      OutputArray _descriptors)
{ 
    if(_image.empty())
        return;

    Mat image = _image.getMat();
    assert(image.type() == CV_8UC1 );   //若错误则终止程序

    // Pre-compute the scale pyramid
    // 构建图像金字塔
    ComputePyramid(image);

    // 计算每层图像的兴趣点
    vector < vector > allKeypoints; // vector>
    ComputeKeyPointsOctTree(allKeypoints);
    //ComputeKeyPointsOld(allKeypoints);

    Mat descriptors;

    int nkeypoints = 0;
    for (int level = 0; level < nlevels; ++level)
        nkeypoints += (int)allKeypoints[level].size();
    if( nkeypoints == 0 )
        _descriptors.release();
    else
    {
        _descriptors.create(nkeypoints, 32, CV_8U);
        descriptors = _descriptors.getMat();
    }

    _keypoints.clear();
    _keypoints.reserve(nkeypoints);

    int offset = 0;
    for (int level = 0; level < nlevels; ++level)
    {
        vector& keypoints = allKeypoints[level];
        int nkeypointsLevel = (int)keypoints.size();

        if(nkeypointsLevel==0)
            continue;

        // preprocess the resized image 对图像进行高斯模糊
        Mat workingMat = mvImagePyramid[level].clone();
        GaussianBlur(workingMat, workingMat, Size(7, 7), 2, 2, BORDER_REFLECT_101);

        // Compute the descriptors 计算描述子,采用高斯分布取点,就是上面的patten
        Mat desc = descriptors.rowRange(offset, offset + nkeypointsLevel);
        computeDescriptors(workingMat, keypoints, desc, pattern);

        offset += nkeypointsLevel;

        // Scale keypoint coordinates对关键点的位置坐做尺度恢复,恢复到原图的位置
        if (level != 0)
        {
            float scale = mvScaleFactor[level]; //getScale(level, firstLevel, scaleFactor);
            for (vector::iterator keypoint = keypoints.begin(),
                 keypointEnd = keypoints.end(); keypoint != keypointEnd; ++keypoint)
                keypoint->pt *= scale;
        }

//在_keypoints.end()前面插入区间keypoints.begin(), keypoints.end()的所有元素
		// And add the keypoints to the output
        _keypoints.insert(_keypoints.end(), keypoints.begin(), keypoints.end());
    }
}

/**
 * 构建图像金字塔
 * @param image 输入图像
 */
void ORBextractor::ComputePyramid(cv::Mat image)
{
    for (int level = 0; level < nlevels; ++level)
    {
        float scale = mvInvScaleFactor[level];
        Size sz(cvRound((float)image.cols*scale), cvRound((float)image.rows*scale));
        Size wholeSize(sz.width + EDGE_THRESHOLD*2, sz.height + EDGE_THRESHOLD*2);
        Mat temp(wholeSize, image.type()), masktemp;
        mvImagePyramid[level] = temp(Rect(EDGE_THRESHOLD, EDGE_THRESHOLD, sz.width, sz.height));

        // Compute the resized image
        if( level != 0 )
        {
            resize(mvImagePyramid[level-1], mvImagePyramid[level], sz, 0, 0, cv::INTER_LINEAR);

            copyMakeBorder(mvImagePyramid[level], temp, EDGE_THRESHOLD, EDGE_THRESHOLD, EDGE_THRESHOLD, EDGE_THRESHOLD,
                           BORDER_REFLECT_101+BORDER_ISOLATED);            
        }
        else
        {
            copyMakeBorder(image, temp, EDGE_THRESHOLD, EDGE_THRESHOLD, EDGE_THRESHOLD, EDGE_THRESHOLD,
                           BORDER_REFLECT_101);            
        }
    }

}

} //namespace ORB_SLAM

你可能感兴趣的:(linux)