Java 泛型详解

2019独角兽企业重金招聘Python工程师标准>>> hot3.png

泛型是Java中一个非常重要的知识点,在Java集合类框架中泛型被广泛应用。本文我们将从零开始来看一下Java泛型的设计,将会涉及到通配符处理,以及让人苦恼的类型擦除。

泛型基础

泛型类

我们首先定义一个简单的Box类:

public class Box {
    private String object;
    public void set(String object) { this.object = object; }
    public String get() { return object; }
}

这是最常见的做法,这样做的一个坏处是Box里面现在只能装入String类型的元素,今后如果我们需要装入Integer等其他类型的元素,还必须要另外重写一个Box,代码得不到复用,使用泛型可以很好的解决这个问题。

public class Box {
    // T stands for "Type"
    private T t;
    public void set(T t) { this.t = t; }
    public T get() { return t; }
}

这样我们的Box类便可以得到复用,我们可以将T替换成任何我们想要的类型:

Box integerBox = new Box();
Box doubleBox = new Box();
Box stringBox = new Box();

泛型方法

看完了泛型类,接下来我们来了解一下泛型方法。声明一个泛型方法很简单,只要在返回类型前面加上一个类似的形式就行了:

public class Util {
    public static  boolean compare(Pair p1, Pair p2) {
        return p1.getKey().equals(p2.getKey()) &&
               p1.getValue().equals(p2.getValue());
    }
}
public class Pair {
    private K key;
    private V value;
    public Pair(K key, V value) {
        this.key = key;
        this.value = value;
    }
    public void setKey(K key) { this.key = key; }
    public void setValue(V value) { this.value = value; }
    public K getKey()   { return key; }
    public V getValue() { return value; }
}

我们可以像下面这样去调用泛型方法:

Pair p1 = new Pair<>(1, "apple");
Pair p2 = new Pair<>(2, "pear");
boolean same = Util.compare(p1, p2);

或者在Java1.7/1.8利用type inference,让Java自动推导出相应的类型参数:

Pair p1 = new Pair<>(1, "apple");
Pair p2 = new Pair<>(2, "pear");
boolean same = Util.compare(p1, p2);

边界符

现在我们要实现这样一个功能,查找一个泛型数组中大于某个特定元素的个数,我们可以这样实现:

public static  int countGreaterThan(T[] anArray, T elem) {
    int count = 0;
    for (T e : anArray)
        if (e > elem)  // compiler error
            ++count;
    return count;
}

但是这样很明显是错误的,因为除了short, int, double, long, float, byte, char等原始类型,其他的类并不一定能使用操作符>,所以编译器报错,那怎么解决这个问题呢?答案是使用边界符。

public interface Comparable {
    public int compareTo(T o);
}

做一个类似于下面这样的声明,这样就等于告诉编译器类型参数T代表的都是实现了Comparable接口的类,这样等于告诉编译器它们都至少实现了compareTo方法。

public static > int countGreaterThan(T[] anArray, T elem) {
    int count = 0;
    for (T e : anArray)
        if (e.compareTo(elem) > 0)
            ++count;
    return count;
}

通配符

在了解通配符之前,我们首先必须要澄清一个概念,还是借用我们上面定义的Box类,假设我们添加一个这样的方法:

public void boxTest(Box n) { /* ... */ }

那么现在Box n允许接受什么类型的参数?我们是否能够传入Box或者Box呢?答案是否定的,虽然Integer和Double是Number的子类,但是在泛型中Box或者BoxBox之间并没有任何的关系。这一点非常重要,接下来我们通过一个完整的例子来加深一下理解。

首先我们先定义几个简单的类,下面我们将用到它:

class Fruit {}
class Apple extends Fruit {}
class Orange extends Fruit {}

下面这个例子中,我们创建了一个泛型类Reader,然后在f1()中当我们尝试Fruit f = fruitReader.readExact(apples);编译器会报错,因为ListList之间并没有任何的关系。

public class GenericReading {
    static List apples = Arrays.asList(new Apple());
    static List fruit = Arrays.asList(new Fruit());
    static class Reader {
        T readExact(List list) {
            return list.get(0);
        }
    }
    static void f1() {
        Reader fruitReader = new Reader();
        // Errors: List cannot be applied to List.
        // Fruit f = fruitReader.readExact(apples);
    }
    public static void main(String[] args) {
        f1();
    }
}

但是按照我们通常的思维习惯,Apple和Fruit之间肯定是存在联系,然而编译器却无法识别,那怎么在泛型代码中解决这个问题呢?我们可以通过使用通配符来解决这个问题:

static class CovariantReader {
    T readCovariant(List list) {
        return list.get(0);
    }
}
static void f2() {
    CovariantReader fruitReader = new CovariantReader();
    Fruit f = fruitReader.readCovariant(fruit);
    Fruit a = fruitReader.readCovariant(apples);
}
public static void main(String[] args) {
    f2();
}

这样就相当与告诉编译器, fruitReader的readCovariant方法接受的参数只要是满足Fruit的子类就行(包括Fruit自身),这样子类和父类之间的关系也就关联上了。

PECS原则

上面我们看到了类似的用法,利用它我们可以从list里面get元素,那么我们可不可以往list里面add元素呢?我们来尝试一下:

public class GenericsAndCovariance {
    public static void main(String[] args) {
        // Wildcards allow covariance:
        List flist = new ArrayList();
        // Compile Error: can't add any type of object:
        // flist.add(new Apple())
        // flist.add(new Orange())
        // flist.add(new Fruit())
        // flist.add(new Object())
        flist.add(null); // Legal but uninteresting
        // We Know that it returns at least Fruit:
        Fruit f = flist.get(0);
    }
}

答案是否定,Java编译器不允许我们这样做,为什么呢?对于这个问题我们不妨从编译器的角度去考虑。因为List flist它自身可以有多种含义:

List flist = new ArrayList();
List flist = new ArrayList();
List flist = new ArrayList();
  • 当我们尝试add一个Apple的时候,flist可能指向new ArrayList();
  • 当我们尝试add一个Orange的时候,flist可能指向new ArrayList();
  • 当我们尝试add一个Fruit的时候,这个Fruit可以是任何类型的Fruit,而flist可能只想某种特定类型的Fruit,编译器无法识别所以会报错。

所以对于实现了的集合类只能将它视为Producer向外提供(get)元素,而不能作为Consumer来对外获取(add)元素。

如果我们要add元素应该怎么做呢?可以使用

public class GenericWriting {
    static List apples = new ArrayList();
    static List fruit = new ArrayList();
    static  void writeExact(List list, T item) {
        list.add(item);
    }
    static void f1() {
        writeExact(apples, new Apple());
        writeExact(fruit, new Apple());
    }
    static  void writeWithWildcard(List list, T item) {
        list.add(item)
    }
    static void f2() {
        writeWithWildcard(apples, new Apple());
        writeWithWildcard(fruit, new Apple());
    }
    public static void main(String[] args) {
        f1(); f2();
    }
}

这样我们可以往容器里面添加元素了,但是使用super的坏处是以后不能get容器里面的元素了,原因很简单,我们继续从编译器的角度考虑这个问题,对于List list,它可以有下面几种含义:

List list = new ArrayList();
List list = new ArrayList();
List list = new ArrayList();
 
   

当我们尝试通过list来get一个Apple的时候,可能会get得到一个Fruit,这个Fruit可以是Orange等其他类型的Fruit。

根据上面的例子,我们可以总结出一条规律,”Producer Extends, Consumer Super”:

  • “Producer Extends” - 如果你需要一个只读List,用它来produce T,那么使用? extends T
  • “Consumer Super” - 如果你需要一个只写List,用它来consume T,那么使用? super T
  • 如果需要同时读取以及写入,那么我们就不能使用通配符了,如果都需要支持,使用

如何阅读过一些Java集合类的源码,可以发现通常我们会将两者结合起来一起用,比如像下面这样:

public class Collections {
    public static  void copy(List dest, List src) {
        for (int i=0; i

类型擦除

Java泛型中最令人苦恼的地方或许就是类型擦除了,特别是对于有C++经验的程序员。类型擦除就是说Java泛型只能用于在编译期间的静态类型检查,然后编译器生成的代码会擦除相应的类型信息,这样到了运行期间实际上JVM根本就知道泛型所代表的具体类型。这样做的目的是因为Java泛型是1.5之后才被引入的,为了保持向下的兼容性,所以只能做类型擦除来兼容以前的非泛型代码。对于这一点,如果阅读Java集合框架的源码,可以发现有些类其实并不支持泛型。

说了这么多,那么泛型擦除到底是什么意思呢?我们先来看一下下面这个简单的例子:

public class Node {
    private T data;
    private Node next;
    public Node(T data, Node next) {
        this.data = data;
        this.next = next;
    }
    public T getData() { return data; }
    // ...
}

编译器做完相应的类型检查之后,实际上到了运行期间上面这段代码实际上将转换成:

public class Node {
    private Object data;
    private Node next;
    public Node(Object data, Node next) {
        this.data = data;
        this.next = next;
    }
    public Object getData() { return data; }
    // ...
}

这意味着不管我们声明Node还是Node,到了运行期间,JVM统统视为Node。有没有什么办法可以解决这个问题呢?这就需要我们自己重新设置bounds了,将上面的代码修改成下面这样:

public class Node> {
    private T data;
    private Node next;
    public Node(T data, Node next) {
        this.data = data;
        this.next = next;
    }
    public T getData() { return data; }
    // ...
}

这样编译器就会将T出现的地方替换成Comparable而不再是默认的Object了:

public class Node {
    private Comparable data;
    private Node next;
    public Node(Comparable data, Node next) {
        this.data = data;
        this.next = next;
    }
    public Comparable getData() { return data; }
    // ...
}

上面的概念或许还是比较好理解,但其实泛型擦除带来的问题远远不止这些,接下来我们系统地来看一下类型擦除所带来的一些问题,有些问题在C++的泛型中可能不会遇见,但是在Java中却需要格外小心。

问题一

在Java中不允许创建泛型数组,类似下面这样的做法编译器会报错:

List[] arrayOfLists = new List[2]; // OK
List[] arrayOfLists = new List[2];  // compile-time error

为什么编译器不支持上面这样的做法呢?继续使用逆向思维,我们站在编译器的角度来考虑这个问题。

我们先来看一下下面这个例子:

Object[] strings = new String[2];
strings[0] = "hi";   // OK
strings[1] = 100;    // An ArrayStoreException is thrown.

对于上面这段代码还是很好理解,字符串数组不能存放整型元素,而且这样的错误往往要等到代码运行的时候才能发现,编译器是无法识别的。接下来我们再来看一下假设Java支持泛型数组的创建会出现什么后果:

Object[] stringLists = new List[];  // compiler error, but pretend it's allowed
stringLists[0] = new ArrayList();   // OK
// An ArrayStoreException should be thrown, but the runtime can't detect it.
stringLists[1] = new ArrayList();

假设我们支持泛型数组的创建,由于运行时期类型信息已经被擦除,JVM实际上根本就不知道new ArrayList()new ArrayList()的区别。类似这样的错误假如出现才实际的应用场景中,将非常难以察觉。

如果你对上面这一点还抱有怀疑的话,可以尝试运行下面这段代码:

public class ErasedTypeEquivalence {
    public static void main(String[] args) {
        Class c1 = new ArrayList().getClass();
        Class c2 = new ArrayList().getClass();
        System.out.println(c1 == c2); // true
    }
}

问题二

继续复用我们上面的Node的类,对于泛型代码,Java编译器实际上还会偷偷帮我们实现一个Bridge method。

public class Node {
    public T data;
    public Node(T data) { this.data = data; }
    public void setData(T data) {
        System.out.println("Node.setData");
        this.data = data;
    }
}
public class MyNode extends Node {
    public MyNode(Integer data) { super(data); }
    public void setData(Integer data) {
        System.out.println("MyNode.setData");
        super.setData(data);
    }
}

看完上面的分析之后,你可能会认为在类型擦除后,编译器会将Node和MyNode变成下面这样:

public class Node {
    public Object data;
    public Node(Object data) { this.data = data; }
    public void setData(Object data) {
        System.out.println("Node.setData");
        this.data = data;
    }
}
public class MyNode extends Node {
    public MyNode(Integer data) { super(data); }
    public void setData(Integer data) {
        System.out.println("MyNode.setData");
        super.setData(data);
    }
}

实际上不是这样的,我们先来看一下下面这段代码,这段代码运行的时候会抛出ClassCastException异常,提示String无法转换成Integer:

MyNode mn = new MyNode(5);
Node n = mn; // A raw type - compiler throws an unchecked warning
n.setData("Hello"); // Causes a ClassCastException to be thrown.
// Integer x = mn.data;

如果按照我们上面生成的代码,运行到第3行的时候不应该报错(注意我注释掉了第4行),因为MyNode中不存在setData(String data)方法,所以只能调用父类Node的setData(Object data)方法,既然这样上面的第3行代码不应该报错,因为String当然可以转换成Object了,那ClassCastException到底是怎么抛出的?

实际上Java编译器对上面代码自动还做了一个处理:

class MyNode extends Node {
    // Bridge method generated by the compiler
    public void setData(Object data) {
        setData((Integer) data);
    }
    public void setData(Integer data) {
        System.out.println("MyNode.setData");
        super.setData(data);
    }
    // ...
}

这也就是为什么上面会报错的原因了,setData((Integer) data);的时候String无法转换成Integer。所以上面第2行编译器提示unchecked warning的时候,我们不能选择忽略,不然要等到运行期间才能发现异常。如果我们一开始加上Node n = mn就好了,这样编译器就可以提前帮我们发现错误。

问题三

正如我们上面提到的,Java泛型很大程度上只能提供静态类型检查,然后类型的信息就会被擦除,所以像下面这样利用类型参数创建实例的做法编译器不会通过:

public static  void append(List list) {
    E elem = new E();  // compile-time error
    list.add(elem);
}

但是如果某些场景我们想要需要利用类型参数创建实例,我们应该怎么做呢?可以利用反射解决这个问题:

public static  void append(List list, Class cls) throws Exception {
    E elem = cls.newInstance();   // OK
    list.add(elem);
}

我们可以像下面这样调用:

List ls = new ArrayList<>();
append(ls, String.class);

实际上对于上面这个问题,还可以采用Factory和Template两种设计模式解决,感兴趣的朋友不妨去看一下Thinking in Java中第15章中关于Creating instance of types(英文版第664页)的讲解,这里我们就不深入了。

问题四

我们无法对泛型代码直接使用instanceof关键字,因为Java编译器在生成代码的时候会擦除所有相关泛型的类型信息,正如我们上面验证过的JVM在运行时期无法识别出ArrayListArrayList的之间的区别:

public static  void rtti(List list) {
    if (list instanceof ArrayList) {  // compile-time error
        // ...
    }
}
=> { ArrayList, ArrayList, LinkedList, ... }

和上面一样,我们可以使用通配符重新设置bounds来解决这个问题:

public static void rtti(List list) {
    if (list instanceof ArrayList) {  // OK; instanceof requires a reifiable type
        // ...
    }
}

工厂模式

接下来我们利用泛型来简单的实现一下工厂模式,首先我们先声明一个接口Factory

package typeinfo.factory;
public interface Factory {
    T create();
}

下面我们定义了几个实体类FuelFilterAirFilter以及FanBeltGeneratorBelt

class Filter extends Part {}
class FuelFilter extends Filter {
    public static class Factory implements typeinfo.factory.Factory {
        public FuelFilter create() {
            return new FuelFilter();
        }
    }
}
class AirFilter extends Filter {
    public static class Factory implements typeinfo.factory.Factory {
        public AirFilter create() {
            return new AirFilter();
        }
    }
}



class Belt extends Part {}
class FanBelt extends Belt {
    public static class Factory implements typeinfo.factory.Factory {
        public FanBelt create() {
            return new FanBelt();
        }
    }
}
class GeneratorBelt extends Belt {
    public static class Factory implements typeinfo.factory.Factory {
        public GeneratorBelt create() {
            return new GeneratorBelt();
        }
    }
}

Part类的实现如下,注意我们上面的实体类都是Part类的间接子类。在Part类我们注册了我们上面的声明的实体类。所以以后如果要创建相关的实体类的话,只需要调用Part类的相关方法就可以了。这么做的一个好处是如果业务中出现了新的实体类比如CabinAirFilter或者PowerSteeringBelt的话,我们不需要修改太多的代码,只需要在Part类中将它们注册即可。

class Part {
    static List> partFactories =
        new ArrayList>();
    static {
        partFactories.add(new FuelFilter.Factory());
        partFactories.add(new AirFilter.Factory());
        partFactories.add(new FanBelt.Factory());
        partFactories.add(new PowerSteeringBelt.Factory());
    }
    private static Random rand = new Random(47);
    public static Part createRandom() {
        int n = rand.nextInt(partFactories.size());
        return partFactories.get(n).create();
    }
    public String toString() {
        return getClass().getSimpleName();
    }
}

最后我们来测试一下:

public class RegisteredFactories {
    public static void main(String[] args) {
        for (int i = 0; i < 10; i++) {
            System.out.println(Part.createRandom());
        }
    }
}

问题五、泛型类型信息

如果我们确实某些场景,如HTTP或RPC或jackson需要获取泛型进行序列化反序列化的时候,需要获取泛型类型信息。

可以参照如下:

package io.flysium.standard.generic;
 
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
 
/**
 *  获取运行时的泛型类型信息
 *
 * @author Sven Augustus
 */
public class Test2 {
 
    static class ParameterizedTypeReference {
        protected final Type type;
 
        public ParameterizedTypeReference() {
            Type superClass = this.getClass().getGenericSuperclass();
            //if (superClass instanceof Class) {
    // throw new IllegalArgumentException(
//"Internal error: TypeReference constructed without actual type information");
            //  } else {
                this.type = ((ParameterizedType) superClass).getActualTypeArguments()[0];
            //}
        }
 
        public Type getType() {
            return type;
        }
    }
 
    public static void main(String[] args) {
// System.out.println(new ParameterizedTypeReference().getType());
// java.lang.ClassCastException: java.lang.Class cannot be cast to java.lang.reflect.ParameterizedType
// 此处会输出报错,因此ParameterizedTypeReference 应不能直接实例化,可以考虑加abstract
 
        System.out.println(new ParameterizedTypeReference() { }.getType());
// ParameterizedTypeReference 的匿名内部类,可以触发super(),
//即 ParameterizedTypeReference()的构造器逻辑,正常运行
    }
 
}

注意一个关键点:

可以通过定义类的方式(通常为匿名内部类,因为我们创建这个类只是为了获得泛型信息)在运行时获得泛型参数。

泛型基础:符号的含义

E:元素,代表Element,一般用于集合中元素的限定

K, V: 分别代表java键值中的Key Value。

N:数字

T:类型,英文 type,一般用于类的限定

V:值

S、U、V 等:多参数情况中的第 2、3、4 个类型

? 表示不确定的java类型(无限制通配符类型)

实际上这只是个业界习惯上约定名字而已,你想用 X、Y、Z 都是可以的,甚至是 $123 也可以,只要是合法的 Java 名称都可以的。

泛型的好处:

    Java1.5增加了泛型的概念。泛型允许你抽象类型,最常见的例子就是容器类型,如集合类的层次。

    泛型的主要好处就是让编译器保留参数的类型信息,执行类型检查,执行类型转换(casting)操作,编译器保证了这些类型转换(casting)的绝对无误。

    使用泛型机制编写的程序代码要比那些杂乱地使用Object变量,然后再进行强制类型转换的代码具有更好的安全性和可读性。 
     泛型程序设计意味着编写的代码可以被很多不同类型的对象所重用。 
     一个泛型类就是具有一个或多个类型变量的类。 

         /** ***** 不使用泛型类型 ****** */
        List list1 =  new ArrayList();
        list1.add(8080);                                   // 编译器不检查值
        String str1 = (String)list1.get(0);  // 需手动强制转换,如转换类型与原数据类型不一致将抛出ClassCastException异常
        
         /** ***** 使用泛型类型 ****** */
        List list2 =  new ArrayList();
        list2.add("value");                  // [类型安全的写入数据] 编译器检查该值,该值必须是String类型才能通过编译
        String str2 = list2.get(0);  // [类型安全的读取数据] 不需要手动转换

——END——

Refer:

[1] Java泛型一览笔录

https://my.oschina.net/langxSpirit/blog/1544427

转载于:https://my.oschina.net/leejun2005/blog/74552

你可能感兴趣的:(Java 泛型详解)