2019独角兽企业重金招聘Python工程师标准>>>
泛型是Java中一个非常重要的知识点,在Java集合类框架中泛型被广泛应用。本文我们将从零开始来看一下Java泛型的设计,将会涉及到通配符处理,以及让人苦恼的类型擦除。
泛型基础
泛型类
我们首先定义一个简单的Box类:
public class Box {
private String object;
public void set(String object) { this.object = object; }
public String get() { return object; }
}
这是最常见的做法,这样做的一个坏处是Box里面现在只能装入String类型的元素,今后如果我们需要装入Integer等其他类型的元素,还必须要另外重写一个Box,代码得不到复用,使用泛型可以很好的解决这个问题。
public class Box {
// T stands for "Type"
private T t;
public void set(T t) { this.t = t; }
public T get() { return t; }
}
这样我们的Box
类便可以得到复用,我们可以将T替换成任何我们想要的类型:
Box integerBox = new Box();
Box doubleBox = new Box();
Box stringBox = new Box();
泛型方法
看完了泛型类,接下来我们来了解一下泛型方法。声明一个泛型方法很简单,只要在返回类型前面加上一个类似
的形式就行了:
public class Util {
public static boolean compare(Pair p1, Pair p2) {
return p1.getKey().equals(p2.getKey()) &&
p1.getValue().equals(p2.getValue());
}
}
public class Pair {
private K key;
private V value;
public Pair(K key, V value) {
this.key = key;
this.value = value;
}
public void setKey(K key) { this.key = key; }
public void setValue(V value) { this.value = value; }
public K getKey() { return key; }
public V getValue() { return value; }
}
我们可以像下面这样去调用泛型方法:
Pair p1 = new Pair<>(1, "apple");
Pair p2 = new Pair<>(2, "pear");
boolean same = Util.compare(p1, p2);
或者在Java1.7/1.8利用type inference,让Java自动推导出相应的类型参数:
Pair p1 = new Pair<>(1, "apple");
Pair p2 = new Pair<>(2, "pear");
boolean same = Util.compare(p1, p2);
边界符
现在我们要实现这样一个功能,查找一个泛型数组中大于某个特定元素的个数,我们可以这样实现:
public static int countGreaterThan(T[] anArray, T elem) {
int count = 0;
for (T e : anArray)
if (e > elem) // compiler error
++count;
return count;
}
但是这样很明显是错误的,因为除了short, int, double, long, float, byte, char
等原始类型,其他的类并不一定能使用操作符>
,所以编译器报错,那怎么解决这个问题呢?答案是使用边界符。
public interface Comparable {
public int compareTo(T o);
}
做一个类似于下面这样的声明,这样就等于告诉编译器类型参数T
代表的都是实现了Comparable
接口的类,这样等于告诉编译器它们都至少实现了compareTo
方法。
public static > int countGreaterThan(T[] anArray, T elem) {
int count = 0;
for (T e : anArray)
if (e.compareTo(elem) > 0)
++count;
return count;
}
通配符
在了解通配符之前,我们首先必须要澄清一个概念,还是借用我们上面定义的Box类,假设我们添加一个这样的方法:
public void boxTest(Box n) { /* ... */ }
那么现在Box
允许接受什么类型的参数?我们是否能够传入Box
或者Box
呢?答案是否定的,虽然Integer和Double是Number的子类,但是在泛型中Box
或者Box
与Box
之间并没有任何的关系。这一点非常重要,接下来我们通过一个完整的例子来加深一下理解。
首先我们先定义几个简单的类,下面我们将用到它:
class Fruit {}
class Apple extends Fruit {}
class Orange extends Fruit {}
下面这个例子中,我们创建了一个泛型类Reader
,然后在f1()
中当我们尝试Fruit f = fruitReader.readExact(apples);
编译器会报错,因为List
与List
之间并没有任何的关系。
public class GenericReading {
static List apples = Arrays.asList(new Apple());
static List fruit = Arrays.asList(new Fruit());
static class Reader {
T readExact(List list) {
return list.get(0);
}
}
static void f1() {
Reader fruitReader = new Reader();
// Errors: List cannot be applied to List.
// Fruit f = fruitReader.readExact(apples);
}
public static void main(String[] args) {
f1();
}
}
但是按照我们通常的思维习惯,Apple和Fruit之间肯定是存在联系,然而编译器却无法识别,那怎么在泛型代码中解决这个问题呢?我们可以通过使用通配符来解决这个问题:
static class CovariantReader {
T readCovariant(List extends T> list) {
return list.get(0);
}
}
static void f2() {
CovariantReader fruitReader = new CovariantReader();
Fruit f = fruitReader.readCovariant(fruit);
Fruit a = fruitReader.readCovariant(apples);
}
public static void main(String[] args) {
f2();
}
这样就相当与告诉编译器, fruitReader的readCovariant方法接受的参数只要是满足Fruit的子类就行(包括Fruit自身),这样子类和父类之间的关系也就关联上了。
PECS原则
上面我们看到了类似 extends T>
的用法,利用它我们可以从list里面get元素,那么我们可不可以往list里面add元素呢?我们来尝试一下:
public class GenericsAndCovariance {
public static void main(String[] args) {
// Wildcards allow covariance:
List extends Fruit> flist = new ArrayList();
// Compile Error: can't add any type of object:
// flist.add(new Apple())
// flist.add(new Orange())
// flist.add(new Fruit())
// flist.add(new Object())
flist.add(null); // Legal but uninteresting
// We Know that it returns at least Fruit:
Fruit f = flist.get(0);
}
}
答案是否定,Java编译器不允许我们这样做,为什么呢?对于这个问题我们不妨从编译器的角度去考虑。因为List extends Fruit> flist
它自身可以有多种含义:
List extends Fruit> flist = new ArrayList();
List extends Fruit> flist = new ArrayList();
List extends Fruit> flist = new ArrayList();
- 当我们尝试add一个Apple的时候,flist可能指向
new ArrayList
;() - 当我们尝试add一个Orange的时候,flist可能指向
new ArrayList
;() - 当我们尝试add一个Fruit的时候,这个Fruit可以是任何类型的Fruit,而flist可能只想某种特定类型的Fruit,编译器无法识别所以会报错。
所以对于实现了 extends T>
的集合类只能将它视为Producer向外提供(get)元素,而不能作为Consumer来对外获取(add)元素。
如果我们要add元素应该怎么做呢?可以使用 super T>
:
public class GenericWriting {
static List apples = new ArrayList();
static List fruit = new ArrayList();
static void writeExact(List list, T item) {
list.add(item);
}
static void f1() {
writeExact(apples, new Apple());
writeExact(fruit, new Apple());
}
static void writeWithWildcard(List super T> list, T item) {
list.add(item)
}
static void f2() {
writeWithWildcard(apples, new Apple());
writeWithWildcard(fruit, new Apple());
}
public static void main(String[] args) {
f1(); f2();
}
}
这样我们可以往容器里面添加元素了,但是使用super的坏处是以后不能get容器里面的元素了,原因很简单,我们继续从编译器的角度考虑这个问题,对于List super Apple> list
,它可以有下面几种含义:
List super Apple> list = new ArrayList();
List super Apple> list = new ArrayList();
List super Apple> list = new ArrayList
当我们尝试通过list来get一个Apple的时候,可能会get得到一个Fruit,这个Fruit可以是Orange等其他类型的Fruit。
根据上面的例子,我们可以总结出一条规律,”Producer Extends, Consumer Super”:
- “Producer Extends” - 如果你需要一个只读List,用它来produce T,那么使用
? extends T
。 - “Consumer Super” - 如果你需要一个只写List,用它来consume T,那么使用
? super T
。 - 如果需要同时读取以及写入,那么我们就不能使用通配符了,如果都需要支持,使用
。
如何阅读过一些Java集合类的源码,可以发现通常我们会将两者结合起来一起用,比如像下面这样:
public class Collections {
public static void copy(List super T> dest, List extends T> src) {
for (int i=0; i
类型擦除
Java泛型中最令人苦恼的地方或许就是类型擦除了,特别是对于有C++经验的程序员。类型擦除就是说Java泛型只能用于在编译期间的静态类型检查,然后编译器生成的代码会擦除相应的类型信息,这样到了运行期间实际上JVM根本就知道泛型所代表的具体类型。这样做的目的是因为Java泛型是1.5之后才被引入的,为了保持向下的兼容性,所以只能做类型擦除来兼容以前的非泛型代码。对于这一点,如果阅读Java集合框架的源码,可以发现有些类其实并不支持泛型。
说了这么多,那么泛型擦除到底是什么意思呢?我们先来看一下下面这个简单的例子:
public class Node {
private T data;
private Node next;
public Node(T data, Node next) {
this.data = data;
this.next = next;
}
public T getData() { return data; }
// ...
}
编译器做完相应的类型检查之后,实际上到了运行期间上面这段代码实际上将转换成:
public class Node {
private Object data;
private Node next;
public Node(Object data, Node next) {
this.data = data;
this.next = next;
}
public Object getData() { return data; }
// ...
}
这意味着不管我们声明Node
还是Node
,到了运行期间,JVM统统视为Node
。有没有什么办法可以解决这个问题呢?这就需要我们自己重新设置bounds了,将上面的代码修改成下面这样:
public class Node> {
private T data;
private Node next;
public Node(T data, Node next) {
this.data = data;
this.next = next;
}
public T getData() { return data; }
// ...
}
这样编译器就会将T
出现的地方替换成Comparable
而不再是默认的Object
了:
public class Node {
private Comparable data;
private Node next;
public Node(Comparable data, Node next) {
this.data = data;
this.next = next;
}
public Comparable getData() { return data; }
// ...
}
上面的概念或许还是比较好理解,但其实泛型擦除带来的问题远远不止这些,接下来我们系统地来看一下类型擦除所带来的一些问题,有些问题在C++的泛型中可能不会遇见,但是在Java中却需要格外小心。
问题一
在Java中不允许创建泛型数组,类似下面这样的做法编译器会报错:
List[] arrayOfLists = new List[2]; // OK
List[] arrayOfLists = new List[2]; // compile-time error
为什么编译器不支持上面这样的做法呢?继续使用逆向思维,我们站在编译器的角度来考虑这个问题。
我们先来看一下下面这个例子:
Object[] strings = new String[2];
strings[0] = "hi"; // OK
strings[1] = 100; // An ArrayStoreException is thrown.
对于上面这段代码还是很好理解,字符串数组不能存放整型元素,而且这样的错误往往要等到代码运行的时候才能发现,编译器是无法识别的。接下来我们再来看一下假设Java支持泛型数组的创建会出现什么后果:
Object[] stringLists = new List[]; // compiler error, but pretend it's allowed
stringLists[0] = new ArrayList(); // OK
// An ArrayStoreException should be thrown, but the runtime can't detect it.
stringLists[1] = new ArrayList();
假设我们支持泛型数组的创建,由于运行时期类型信息已经被擦除,JVM实际上根本就不知道new ArrayList
和new ArrayList
的区别。类似这样的错误假如出现才实际的应用场景中,将非常难以察觉。
如果你对上面这一点还抱有怀疑的话,可以尝试运行下面这段代码:
public class ErasedTypeEquivalence {
public static void main(String[] args) {
Class c1 = new ArrayList().getClass();
Class c2 = new ArrayList().getClass();
System.out.println(c1 == c2); // true
}
}
问题二
继续复用我们上面的Node
的类,对于泛型代码,Java编译器实际上还会偷偷帮我们实现一个Bridge method。
public class Node {
public T data;
public Node(T data) { this.data = data; }
public void setData(T data) {
System.out.println("Node.setData");
this.data = data;
}
}
public class MyNode extends Node {
public MyNode(Integer data) { super(data); }
public void setData(Integer data) {
System.out.println("MyNode.setData");
super.setData(data);
}
}
看完上面的分析之后,你可能会认为在类型擦除后,编译器会将Node和MyNode变成下面这样:
public class Node {
public Object data;
public Node(Object data) { this.data = data; }
public void setData(Object data) {
System.out.println("Node.setData");
this.data = data;
}
}
public class MyNode extends Node {
public MyNode(Integer data) { super(data); }
public void setData(Integer data) {
System.out.println("MyNode.setData");
super.setData(data);
}
}
实际上不是这样的,我们先来看一下下面这段代码,这段代码运行的时候会抛出ClassCastException
异常,提示String无法转换成Integer:
MyNode mn = new MyNode(5);
Node n = mn; // A raw type - compiler throws an unchecked warning
n.setData("Hello"); // Causes a ClassCastException to be thrown.
// Integer x = mn.data;
如果按照我们上面生成的代码,运行到第3行的时候不应该报错(注意我注释掉了第4行),因为MyNode中不存在setData(String data)
方法,所以只能调用父类Node的setData(Object data)
方法,既然这样上面的第3行代码不应该报错,因为String当然可以转换成Object了,那ClassCastException
到底是怎么抛出的?
实际上Java编译器对上面代码自动还做了一个处理:
class MyNode extends Node {
// Bridge method generated by the compiler
public void setData(Object data) {
setData((Integer) data);
}
public void setData(Integer data) {
System.out.println("MyNode.setData");
super.setData(data);
}
// ...
}
这也就是为什么上面会报错的原因了,setData((Integer) data);
的时候String无法转换成Integer。所以上面第2行编译器提示unchecked warning
的时候,我们不能选择忽略,不然要等到运行期间才能发现异常。如果我们一开始加上Node
就好了,这样编译器就可以提前帮我们发现错误。
问题三
正如我们上面提到的,Java泛型很大程度上只能提供静态类型检查,然后类型的信息就会被擦除,所以像下面这样利用类型参数创建实例的做法编译器不会通过:
public static void append(List list) {
E elem = new E(); // compile-time error
list.add(elem);
}
但是如果某些场景我们想要需要利用类型参数创建实例,我们应该怎么做呢?可以利用反射解决这个问题:
public static void append(List list, Class cls) throws Exception {
E elem = cls.newInstance(); // OK
list.add(elem);
}
我们可以像下面这样调用:
List ls = new ArrayList<>();
append(ls, String.class);
实际上对于上面这个问题,还可以采用Factory和Template两种设计模式解决,感兴趣的朋友不妨去看一下Thinking in Java中第15章中关于Creating instance of types(英文版第664页)的讲解,这里我们就不深入了。
问题四
我们无法对泛型代码直接使用instanceof
关键字,因为Java编译器在生成代码的时候会擦除所有相关泛型的类型信息,正如我们上面验证过的JVM在运行时期无法识别出ArrayList
和ArrayList
的之间的区别:
public static void rtti(List list) {
if (list instanceof ArrayList) { // compile-time error
// ...
}
}
=> { ArrayList, ArrayList, LinkedList, ... }
和上面一样,我们可以使用通配符重新设置bounds来解决这个问题:
public static void rtti(List> list) {
if (list instanceof ArrayList>) { // OK; instanceof requires a reifiable type
// ...
}
}
工厂模式
接下来我们利用泛型来简单的实现一下工厂模式,首先我们先声明一个接口Factory
:
package typeinfo.factory;
public interface Factory {
T create();
}
下面我们定义了几个实体类FuelFilter
和AirFilter
以及FanBelt
和GeneratorBelt
。
class Filter extends Part {}
class FuelFilter extends Filter {
public static class Factory implements typeinfo.factory.Factory {
public FuelFilter create() {
return new FuelFilter();
}
}
}
class AirFilter extends Filter {
public static class Factory implements typeinfo.factory.Factory {
public AirFilter create() {
return new AirFilter();
}
}
}
class Belt extends Part {}
class FanBelt extends Belt {
public static class Factory implements typeinfo.factory.Factory {
public FanBelt create() {
return new FanBelt();
}
}
}
class GeneratorBelt extends Belt {
public static class Factory implements typeinfo.factory.Factory {
public GeneratorBelt create() {
return new GeneratorBelt();
}
}
}
Part
类的实现如下,注意我们上面的实体类都是Part
类的间接子类。在Part类我们注册
了我们上面的声明的实体类。所以以后如果要创建相关的实体类的话,只需要调用Part类的相关方法就可以了。这么做的一个好处是如果业务中出现了新的实体类比如CabinAirFilter
或者PowerSteeringBelt
的话,我们不需要修改太多的代码,只需要在Part类中将它们注册即可。
class Part {
static List> partFactories =
new ArrayList>();
static {
partFactories.add(new FuelFilter.Factory());
partFactories.add(new AirFilter.Factory());
partFactories.add(new FanBelt.Factory());
partFactories.add(new PowerSteeringBelt.Factory());
}
private static Random rand = new Random(47);
public static Part createRandom() {
int n = rand.nextInt(partFactories.size());
return partFactories.get(n).create();
}
public String toString() {
return getClass().getSimpleName();
}
}
最后我们来测试一下:
public class RegisteredFactories {
public static void main(String[] args) {
for (int i = 0; i < 10; i++) {
System.out.println(Part.createRandom());
}
}
}
问题五、泛型类型信息
如果我们确实某些场景,如HTTP或RPC或jackson需要获取泛型进行序列化反序列化的时候,需要获取泛型类型信息。
可以参照如下:
package io.flysium.standard.generic;
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
/**
* 获取运行时的泛型类型信息
*
* @author Sven Augustus
*/
public class Test2 {
static class ParameterizedTypeReference {
protected final Type type;
public ParameterizedTypeReference() {
Type superClass = this.getClass().getGenericSuperclass();
//if (superClass instanceof Class) {
// throw new IllegalArgumentException(
//"Internal error: TypeReference constructed without actual type information");
// } else {
this.type = ((ParameterizedType) superClass).getActualTypeArguments()[0];
//}
}
public Type getType() {
return type;
}
}
public static void main(String[] args) {
// System.out.println(new ParameterizedTypeReference().getType());
// java.lang.ClassCastException: java.lang.Class cannot be cast to java.lang.reflect.ParameterizedType
// 此处会输出报错,因此ParameterizedTypeReference 应不能直接实例化,可以考虑加abstract
System.out.println(new ParameterizedTypeReference() { }.getType());
// ParameterizedTypeReference 的匿名内部类,可以触发super(),
//即 ParameterizedTypeReference()的构造器逻辑,正常运行
}
}
注意一个关键点:
可以通过定义类的方式(通常为匿名内部类,因为我们创建这个类只是为了获得泛型信息)在运行时获得泛型参数。
泛型基础:符号的含义
E:元素,代表Element,一般用于集合中元素的限定
K, V: 分别代表java键值中的Key Value。
N:数字
T:类型,英文 type,一般用于类的限定
V:值
S、U、V 等:多参数情况中的第 2、3、4 个类型
? 表示不确定的java类型(无限制通配符类型)
实际上这只是个业界习惯上约定名字而已,你想用 X、Y、Z 都是可以的,甚至是 $123 也可以,只要是合法的 Java 名称都可以的。
泛型的好处:
Java1.5增加了泛型的概念。泛型允许你抽象类型,最常见的例子就是容器类型,如集合类的层次。
泛型的主要好处就是让编译器保留参数的类型信息,执行类型检查,执行类型转换(casting)操作,编译器保证了这些类型转换(casting)的绝对无误。
使用泛型机制编写的程序代码要比那些杂乱地使用Object变量,然后再进行强制类型转换的代码具有更好的安全性和可读性。
泛型程序设计意味着编写的代码可以被很多不同类型的对象所重用。
一个泛型类就是具有一个或多个类型变量的类。
/** ***** 不使用泛型类型 ****** */
List list1 = new ArrayList();
list1.add(8080); // 编译器不检查值
String str1 = (String)list1.get(0); // 需手动强制转换,如转换类型与原数据类型不一致将抛出ClassCastException异常
/** ***** 使用泛型类型 ****** */
List list2 = new ArrayList();
list2.add("value"); // [类型安全的写入数据] 编译器检查该值,该值必须是String类型才能通过编译
String str2 = list2.get(0); // [类型安全的读取数据] 不需要手动转换
——END——
Refer:
[1] Java泛型一览笔录
https://my.oschina.net/langxSpirit/blog/1544427