- Spark 性能优化(四):Cache
LevenBigData
spark性能调优spark性能优化大数据
在Spark中,缓存是一种将计算结果存储在内存中的方式,目的是加速后续操作。当你执行迭代算法或查询时,如果多次重复使用相同的数据集,缓存可以避免每次都重新计算相同的转换操作。通过缓存,Spark可以将数据存储在内存中,这样在后续的处理阶段就能更快地访问。1.Spark缓存的关键点:缓存基本概念:通过调用.cache()对DataFrame或RDD进行缓存。默认情况下,数据会存储在内存中(RAM),
- 使用Docker搭建Flink集群
O_1CxH
Flink大数据Kafka大数据dockerflink容器
目录使用Docker搭建Flink集群docker-compose一键搭建步骤附录参考资料使用Docker搭建Flink集群在学习大数据框架的时候,需要一个真实的环境。我们知道,像spark、flink这些计算框架都有多种运行模式:在本地使用多线程模拟集群真正的分布式集群如果直接在IDE(Intellj)里面编译和运行写好的程序,实际上是用的前一种运行模式;如果想尝试真正的生产环境中任务的提交和管
- Spark 和 Flink
信徒_
sparkflink大数据
Spark和Flink都是目前流行的大数据处理引擎,但它们在架构设计、应用场景、性能和生态方面有较大区别。以下是详细对比:1.架构与核心概念方面ApacheSparkApacheFlink计算模型微批(Micro-Batch)为主,但支持结构化流(StructuredStreaming)原生流(TrueStreaming),基于事件驱动处理方式以RDD、DataFrame/Dataset作为核心抽
- spark任务运行
冰火同学
Sparkspark大数据分布式
运行环境在这里插入代码片[root@hadoop000conf]#java-versionjavaversion"1.8.0_144"Java(TM)SERuntimeEnvironment(build1.8.0_144-b01)[root@hadoop000conf]#echo$JAVA_HOME/home/hadoop/app/jdk1.8.0_144[root@hadoop000conf]#
- 【Redis】golang操作Redis基础入门
寸 铁
go数据库Redisredisgolang数据库CRUD基本操作分布式键值对
【Redis】golang操作Redis基础入门大家好我是寸铁总结了一篇【Redis】golang操作Redis基础入门sparkles:喜欢的小伙伴可以点点关注Redis的作用Redis(RemoteDictionaryServer)是一个开源的内存数据库,它主要用于存储键值对,并提供多种数据结构的支持。Redis的主要作用包括:1.缓存:Redis可以作为缓存系统,将常用的数据缓存在内存中,以
- hive spark读取hive hbase外表报错分析和解决
spring208208
hivehivesparkhbase
问题现象使用Sparkshell操作hive关联Hbase的外表导致报错;hive使用tez引擎操作关联Hbase的外表时报错。问题1:使用tez或spark引擎,在hive查询时只要关联hbase的hive表就会有问题其他表正常。“org.apache.hadoop.hbase.client.RetriesExhaustedException:Can’tgetthelocations”问题2:s
- spark-广播变量
哈哈哈哈q
+sparkhdfshadoop大数据spark
当本地数据极大的时候,可以使用广播变量,使得减少内存。本地集合对象和分布式集合对象(RDD)进行关联的时候,需要将本地集合对象广播变量。本地的数据传输到集群上,会发到每一个线程,每一个分区。每一个进程executor,有多个线程分区,进程内的线程数据共享因此,给每一个线程发送数据会导致数据占用,浪费资源。所有,出现了广播变量,使得只发送给进程代码使用:broadcast=sc.broadcast(
- 探索数据云的无缝桥梁:Apache Spark 与 Snowflake 的完美结合
窦育培
探索数据云的无缝桥梁:ApacheSpark与Snowflake的完美结合spark-snowflakeSnowflakeDataSourceforApacheSpark.项目地址:https://gitcode.com/gh_mirrors/sp/spark-snowflake项目介绍在大数据处理的浩瀚宇宙中,Snowflake以其独特的云数据仓库能力闪耀,而ApacheSpark则是数据分析和
- maven插件学习(maven-shade-plugin和maven-antrun-plugin插件)
catcher92
javamavenmaven学习大数据
整合spark3.3.x和hive2.1.1-cdh6.3.2碰到个问题,就是spark官方支持的hive是2.3.x,但是cdh中的hive确是2.1.x的,项目中又计划用spark-thrift-server,导致编译过程中有部分报错。其中OperationLog这个类在hive2.3中新增加了几个方法,导致编译报错。这个时候有两种解决办法:修改spark源码,注释掉调用OperationLo
- 使用SparkLLM实现智能聊天:技术原理与实战演示
shuoac
java
在本篇文章中,我们将探讨如何使用iFlyTek的SparkLLM模型来实现智能聊天功能。我们将详细介绍SparkLLM的技术背景、核心原理,并通过实际代码展示如何进行实现。另外,还会分析应用场景并给出一些实践建议。技术背景介绍SparkLLM是由iFlyTek提供的一种强大的语言模型,支持多种语言生成任务。它能够理解并生成自然语言,适用于对话系统、内容生成、智能客服等场景。核心原理解析SparkL
- Spark 性能优化 (三):RBO 与 CBO
LevenBigData
spark性能调优spark性能优化ajax
1.RBO的核心概念在ApacheSpark的查询优化过程中,规则优化(Rule-BasedOptimization,RBO)是Catalyst优化器的一个关键组成部分。它主要依赖于一组固定的规则进行优化,而不是基于统计信息(如CBO-Cost-BasedOptimization)。RBO主要通过一系列逻辑规则(LogicalRules)和物理规则(PhysicalRules)来转换和优化查询计划
- python 并行框架_基于python的高性能实时并行机器学习框架之Ray介绍
weixin_39778582
python并行框架
前言加州大学伯克利分校实时智能安全执行实验室(RISELab)的研究人员已开发出了一种新的分布式框架,该框架旨在让基于Python的机器学习和深度学习工作负载能够实时执行,并具有类似消息传递接口(MPI)的性能和细粒度。这种框架名为Ray,看起来有望取代Spark,业界认为Spark对于一些现实的人工智能应用而言速度太慢了;过不了一年,Ray应该会准备好用于生产环境。目前ray已经发布了0.3.0
- java获取hive表所有字段,Hive Sql从表中动态获取空列计数
拾亿年
java获取hive表所有字段
我正在使用datastaxspark集成和sparkSQLthrift服务器,它为我提供了一个HiveSQL接口来查询Cassandra中的表.我的数据库中的表是动态创建的,我想要做的是仅根据表名在表的每列中获取空值的计数.我可以使用describedatabase.table获取列名,但在hiveSQL中,如何在另一个为所有列计数null的select查询中使用其输出.更新1:使用Dudu的解决
- PySpark查询Dataframe中包含乱码的数据记录的方法
weixin_30777913
python大数据spark
首先,用PySpark获取Dataframe中所有非ASCII字符,找到其中的非乱码字符。frompyspark.sqlimportSparkSessionfrompyspark.sql.functionsimportcol,concat_ws,explode,split,coalesce,litfrompyspark.sql.typesimportStringTypespark=SparkSes
- spark streaming基础操作
天选之子123
大数据spark大数据分布式
sparkstreaming基础操作一、什么是sparkstreamingSparkStreaming用于流式数据的处理。SparkStreaming使用离散化流(discretized作为抽象表示,叫作DStream。DStream是随时间推移而收到的数据的序列。在内部,每个时间区间收到的数据都作为RDD存在,而DStream是由这些RDD所组成的序列(因此得名“离散化”)。简单来说,DStre
- flink实时集成利器 - apache seatunnel - 核心架构详解
24k小善
flinkapache架构
SeaTunnel(原名Waterdrop)是一个分布式、高性能、易扩展的数据集成平台,专注于大数据领域的数据同步、数据迁移和数据转换。它支持多种数据源和数据目标,并可以与ApacheFlink、Spark等计算引擎集成。以下是SeaTunnel的核心架构详解:SeaTunnel核心架构SeaTunnel的架构设计分为以下几个核心模块:1.数据源(Source)功能:负责从外部系统读取数据。支持的
- DS缩写乱争:当小海豚撞上AI顶流,技术圈也逃不过“撞名”修罗场
数据库
DS缩写风云:从“小海豚”到“深度求索”的魔幻现实曾几何时,技术圈提到DS,人们脑海中浮现的是一只灵动的“小海豚”——ApacheDolphinScheduler(简称DS)。这个2019年诞生的分布式任务调度系统,凭借可视化DAG界面、多租户支持和对Hadoop/Spark生态的深度集成,一度是大数据工程师的“梦中情工”。然而,命运的齿轮在2025年初突然加速转动:杭州AI公司DeepSeek(
- 如何在Java中实现高效的分布式计算框架:从Hadoop到Spark
省赚客app开发者
javahadoopspark
如何在Java中实现高效的分布式计算框架:从Hadoop到Spark大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!今天我们来探讨如何在Java中实现高效的分布式计算框架,重点介绍Hadoop和Spark这两个在大数据处理领域中广泛使用的技术。一、Hadoop:基础分布式计算框架Hadoop是一个开源的分布式计算框架,最早由Apache开发,旨在处理海量数据。它的核心
- Spark源码分析
数据年轮
Sparkspark源码spark大数据源码分析
过程描述:1.通过Shell脚本启动Master,Master类继承Actor类,通过ActorySystem创建并启动。2.通过Shell脚本启动Worker,Worker类继承Actor类,通过ActorySystem创建并启动。3.Worker通过Akka或者Netty发送消息向Master注册并汇报自己的资源信息(内存以及CPU核数等),以后就是定时汇报,保持心跳。4.Master接受消息
- Spark 源码 | 脚本分析总结
董可伦
spark源码脚本
前言最初是想学习一下Spark提交流程的源码,比如SparkOnYarn、Standalone。之前只是通过网上总结的文章大概了解整体的提交流程,但是每个文章描述的又不太一样,弄不清楚到底哪个说的准确,比如Client和CLuster模式的区别,Driver到底是干啥的,是如何定义的,为了彻底弄清楚这些疑问,所以决定学习一下相关的源码。因为不管是服务启动还是应用程序启动,都是通过脚本提交的,所以我
- Spark性能调优-----常规性能调优(一)最优资源配置
weidajiangjiang
spark性能调优常规资源配置
1.1.1常规性能调优一:最优资源配置Spark性能调优的第一步,就是为任务分配更多的资源,在一定范围内,增加资源的分配与性能的提升是成正比的,实现了最优的资源配置后,在此基础上再考虑进行后面论述的性能调优策略。资源的分配在使用脚本提交Spark任务时进行指定,标准的Spark任务提交脚本如代码清单2-1所示:代码清单2-1标准Spark提交脚本/usr/opt/modules/spark/bin
- Spark性能调优系列:Spark资源模型以及调优
Mr Cao
大数据sparkSpark性能调优
Spark资源模型Spark内存模型Spark在一个Executor中的内存分为三块,execution内存、storage内存、other内存。execution内存是执行内存,join、aggregate都在这部分中执行,shuffle的数据也会先缓存在这个内存中,满了再写入磁盘,能够减少IO,Map过程也是在这个内存中执行的。(0.25)storage内存是存储broadcast,cache
- spark 性能调优 (一):执行计划
LevenBigData
spark性能调优spark大数据
在Spark中,explain函数用于提供数据框(DataFrame)或SQL查询的逻辑计划和物理执行计划的详细解释。它可以帮助开发者理解Spark是如何执行查询的,包括优化过程、转换步骤以及它将采用的物理执行策略。1.逻辑计划(LogicalPlan)逻辑计划代表了Spark将应用于处理数据的抽象操作序列。它是基于用户提供的DataFrameAPI或SQL查询,经过优化前的中间表示。未优化的逻辑
- spark技术基础知识
24k小善
spark服务器
1.Spark的宽窄依赖划分Q:Spark中如何划分宽依赖和窄依赖?A:窄依赖:父RDD的每个分区最多被一个子RDD的分区依赖(如map、filter),不会触发shuffle。宽依赖:父RDD的每个分区可能被多个子RDD的分区依赖(如groupByKey、reduceByKey),会触发shuffle。Q:宽依赖和窄依赖对性能的影响是什么?A:窄依赖:计算效率高,数据不需要跨节点传输。宽依赖:涉
- Spark图书数据分析系统 Springboot协同过滤-余弦函数推荐系统 爬虫1万+数据 大屏数据展示 + [手把手视频教程 和 开发文档]
QQ-1305637939
毕业设计大数据毕设图书数据分析sparkspringboot爬虫
Spark图书数据分析系统Springboot协同过滤-余弦函数推荐系统爬虫1万+数据大屏数据展示+[手把手视频教程和开发文档]【亮点功能】1.Springboot+Vue+Element-UI+Mysql前后端分离2.Echarts图表统计数据,直观展示数据情况3.发表评论后,用户可以回复评论,回复的评论可以被再次回复,一级评论可以添加图片附件4.爬虫图书数据1万+5.推荐图书列表展示,推荐图书
- 计算机毕业设计hadoop+spark+hive新能源汽车数据分析可视化大屏 汽车推荐系统 新能源汽车推荐系统 汽车爬虫 汽车大数据 机器学习 大数据毕业设计 深度学习 知识图谱 人工智能
qq+593186283
hadoop大数据人工智能
(1)设计目的本次设计一个基于Hive的新能源汽车数据仓管理系统。企业管理员登录系统后可以在汽车保养时,根据这些汽车内置传感器传回的数据分析其故障原因,以便维修人员更加及时准确处理相关的故障问题。或者对这些数据分析之后向车主进行预警提示车主注意保养汽车,以提高汽车行驶的安全系数。(2)设计要求利用Flume进行分布式的日志数据采集,Kafka实现高吞吐量的数据传输,DateX进行数据清洗、转换和整
- 【spark】【在YARN上运行Spark】【Running Spark on YARN】
资源存储库
spark
目录RunningSparkonYARN在YARN上运行SparkSecurity安全LaunchingSparkonYARN在YARN上启动SparkAddingOtherJARs添加其他JARPreparations筹备工作Configuration配置DebuggingyourApplication调试应用程序SparkProperties【Spark属性】Availablepatterns
- 在Jupyter Notebook中进行大数据分析:集成Apache Spark
范范0825
jupyter数据分析apache
在JupyterNotebook中进行大数据分析:集成ApacheSpark介绍JupyterNotebook是一款广泛使用的数据科学工具,结合ApacheSpark后,能够处理和分析大规模数据。ApacheSpark是一个快速的统一分析引擎,支持大数据处理和分布式计算。本教程将详细介绍如何在JupyterNotebook中集成和使用Spark进行大数据分析。前提条件基本的Python编程知识基本
- 知识图谱智能应用系统:数据分析与挖掘技术文档
光芒再现0394
知识图谱数据分析人工智能
一、概述在知识图谱智能应用系统中,数据分析与挖掘模块是实现知识发现和智能应用的核心环节。该模块负责处理和分析来自数据采集与预处理模块的结构化和半结构化数据,提取有价值的知识,并将其转化为可用于知识图谱构建和应用的三元组数据。本技术文档详细介绍了数据分析与挖掘模块中使用到的关键技术,包括SparkML、StanfordNLP、JNA、Jena、Python调用以及定时调度。二、技术栈介绍(一)Spa
- spark性能优化点(超详解!!!珍藏版!!!)
深漠大侠
sparkspark性能优化
spark性能优化点分配更多的资源1.1分配哪些资源1.2在哪里可以设置这些资源1.3参数调节到多大,算是最大分配更多的资源:它是性能优化调优的王道,就是增加和分配更多的资源,这对于性能和速度上的提升是显而易见的,基本上,在一定范围之内,增加资源与性能的提升,是成正比的;写完了一个复杂的spark作业之后,进行性能调优的时候,首先第一步,就是要来调节最优的资源配置;在这个基础之上,如果说你的spa
- Spring的注解积累
yijiesuifeng
spring注解
用注解来向Spring容器注册Bean。
需要在applicationContext.xml中注册:
<context:component-scan base-package=”pagkage1[,pagkage2,…,pagkageN]”/>。
如:在base-package指明一个包
<context:component-sc
- 传感器
百合不是茶
android传感器
android传感器的作用主要就是来获取数据,根据得到的数据来触发某种事件
下面就以重力传感器为例;
1,在onCreate中获得传感器服务
private SensorManager sm;// 获得系统的服务
private Sensor sensor;// 创建传感器实例
@Override
protected void
- [光磁与探测]金吕玉衣的意义
comsci
这是一个古代人的秘密:现在告诉大家
信不信由你们:
穿上金律玉衣的人,如果处于灵魂出窍的状态,可以飞到宇宙中去看星星
这就是为什么古代
- 精简的反序打印某个数
沐刃青蛟
打印
以前看到一些让求反序打印某个数的程序。
比如:输入123,输出321。
记得以前是告诉你是几位数的,当时就抓耳挠腮,完全没有思路。
似乎最后是用到%和/方法解决的。
而今突然想到一个简短的方法,就可以实现任意位数的反序打印(但是如果是首位数或者尾位数为0时就没有打印出来了)
代码如下:
long num, num1=0;
- PHP:6种方法获取文件的扩展名
IT独行者
PHP扩展名
PHP:6种方法获取文件的扩展名
1、字符串查找和截取的方法
1
$extension
=
substr
(
strrchr
(
$file
,
'.'
), 1);
2、字符串查找和截取的方法二
1
$extension
=
substr
- 面试111
文强chu
面试
1事务隔离级别有那些 ,事务特性是什么(问到一次)
2 spring aop 如何管理事务的,如何实现的。动态代理如何实现,jdk怎么实现动态代理的,ioc是怎么实现的,spring是单例还是多例,有那些初始化bean的方式,各有什么区别(经常问)
3 struts默认提供了那些拦截器 (一次)
4 过滤器和拦截器的区别 (频率也挺高)
5 final,finally final
- XML的四种解析方式
小桔子
domjdomdom4jsax
在平时工作中,难免会遇到把 XML 作为数据存储格式。面对目前种类繁多的解决方案,哪个最适合我们呢?在这篇文章中,我对这四种主流方案做一个不完全评测,仅仅针对遍历 XML 这块来测试,因为遍历 XML 是工作中使用最多的(至少我认为)。 预 备 测试环境: AMD 毒龙1.4G OC 1.5G、256M DDR333、Windows2000 Server
- wordpress中常见的操作
aichenglong
中文注册wordpress移除菜单
1 wordpress中使用中文名注册解决办法
1)使用插件
2)修改wp源代码
进入到wp-include/formatting.php文件中找到
function sanitize_user( $username, $strict = false
- 小飞飞学管理-1
alafqq
管理
项目管理的下午题,其实就在提出问题(挑刺),分析问题,解决问题。
今天我随意看下10年上半年的第一题。主要就是项目经理的提拨和培养。
结合我自己经历写下心得
对于公司选拔和培养项目经理的制度有什么毛病呢?
1,公司考察,选拔项目经理,只关注技术能力,而很少或没有关注管理方面的经验,能力。
2,公司对项目经理缺乏必要的项目管理知识和技能方面的培训。
3,公司对项目经理的工作缺乏进行指
- IO输入输出部分探讨
百合不是茶
IO
//文件处理 在处理文件输入输出时要引入java.IO这个包;
/*
1,运用File类对文件目录和属性进行操作
2,理解流,理解输入输出流的概念
3,使用字节/符流对文件进行读/写操作
4,了解标准的I/O
5,了解对象序列化
*/
//1,运用File类对文件目录和属性进行操作
//在工程中线创建一个text.txt
- getElementById的用法
bijian1013
element
getElementById是通过Id来设置/返回HTML标签的属性及调用其事件与方法。用这个方法基本上可以控制页面所有标签,条件很简单,就是给每个标签分配一个ID号。
返回具有指定ID属性值的第一个对象的一个引用。
语法:
&n
- 励志经典语录
bijian1013
励志人生
经典语录1:
哈佛有一个著名的理论:人的差别在于业余时间,而一个人的命运决定于晚上8点到10点之间。每晚抽出2个小时的时间用来阅读、进修、思考或参加有意的演讲、讨论,你会发现,你的人生正在发生改变,坚持数年之后,成功会向你招手。不要每天抱着QQ/MSN/游戏/电影/肥皂剧……奋斗到12点都舍不得休息,看就看一些励志的影视或者文章,不要当作消遣;学会思考人生,学会感悟人生
- [MongoDB学习笔记三]MongoDB分片
bit1129
mongodb
MongoDB的副本集(Replica Set)一方面解决了数据的备份和数据的可靠性问题,另一方面也提升了数据的读写性能。MongoDB分片(Sharding)则解决了数据的扩容问题,MongoDB作为云计算时代的分布式数据库,大容量数据存储,高效并发的数据存取,自动容错等是MongoDB的关键指标。
本篇介绍MongoDB的切片(Sharding)
1.何时需要分片
&nbs
- 【Spark八十三】BlockManager在Spark中的使用场景
bit1129
manager
1. Broadcast变量的存储,在HttpBroadcast类中可以知道
2. RDD通过CacheManager存储RDD中的数据,CacheManager也是通过BlockManager进行存储的
3. ShuffleMapTask得到的结果数据,是通过FileShuffleBlockManager进行管理的,而FileShuffleBlockManager最终也是使用BlockMan
- yum方式部署zabbix
ronin47
yum方式部署zabbix
安装网络yum库#rpm -ivh http://repo.zabbix.com/zabbix/2.4/rhel/6/x86_64/zabbix-release-2.4-1.el6.noarch.rpm 通过yum装mysql和zabbix调用的插件还有agent代理#yum install zabbix-server-mysql zabbix-web-mysql mysql-
- Hibernate4和MySQL5.5自动创建表失败问题解决方法
byalias
J2EEHibernate4
今天初学Hibernate4,了解了使用Hibernate的过程。大体分为4个步骤:
①创建hibernate.cfg.xml文件
②创建持久化对象
③创建*.hbm.xml映射文件
④编写hibernate相应代码
在第四步中,进行了单元测试,测试预期结果是hibernate自动帮助在数据库中创建数据表,结果JUnit单元测试没有问题,在控制台打印了创建数据表的SQL语句,但在数据库中
- Netty源码学习-FrameDecoder
bylijinnan
javanetty
Netty 3.x的user guide里FrameDecoder的例子,有几个疑问:
1.文档说:FrameDecoder calls decode method with an internally maintained cumulative buffer whenever new data is received.
为什么每次有新数据到达时,都会调用decode方法?
2.Dec
- SQL行列转换方法
chicony
行列转换
create table tb(终端名称 varchar(10) , CEI分值 varchar(10) , 终端数量 int)
insert into tb values('三星' , '0-5' , 74)
insert into tb values('三星' , '10-15' , 83)
insert into tb values('苹果' , '0-5' , 93)
- 中文编码测试
ctrain
编码
循环打印转换编码
String[] codes = {
"iso-8859-1",
"utf-8",
"gbk",
"unicode"
};
for (int i = 0; i < codes.length; i++) {
for (int j
- hive 客户端查询报堆内存溢出解决方法
daizj
hive堆内存溢出
hive> select * from t_test where ds=20150323 limit 2;
OK
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
问题原因: hive堆内存默认为256M
这个问题的解决方法为:
修改/us
- 人有多大懒,才有多大闲 (评论『卓有成效的程序员』)
dcj3sjt126com
程序员
卓有成效的程序员给我的震撼很大,程序员作为特殊的群体,有的人可以这么懒, 懒到事情都交给机器去做 ,而有的人又可以那么勤奋,每天都孜孜不倦得做着重复单调的工作。
在看这本书之前,我属于勤奋的人,而看完这本书以后,我要努力变成懒惰的人。
不要在去庞大的开始菜单里面一项一项搜索自己的应用程序,也不要在自己的桌面上放置眼花缭乱的快捷图标
- Eclipse简单有用的配置
dcj3sjt126com
eclipse
1、显示行号 Window -- Prefences -- General -- Editors -- Text Editors -- show line numbers
2、代码提示字符 Window ->Perferences,并依次展开 Java -> Editor -> Content Assist,最下面一栏 auto-Activation
- 在tomcat上面安装solr4.8.0全过程
eksliang
Solrsolr4.0后的版本安装solr4.8.0安装
转载请出自出处:
http://eksliang.iteye.com/blog/2096478
首先solr是一个基于java的web的应用,所以安装solr之前必须先安装JDK和tomcat,我这里就先省略安装tomcat和jdk了
第一步:当然是下载去官网上下载最新的solr版本,下载地址
- Android APP通用型拒绝服务、漏洞分析报告
gg163
漏洞androidAPP分析
点评:记得曾经有段时间很多SRC平台被刷了大量APP本地拒绝服务漏洞,移动安全团队爱内测(ineice.com)发现了一个安卓客户端的通用型拒绝服务漏洞,来看看他们的详细分析吧。
0xr0ot和Xbalien交流所有可能导致应用拒绝服务的异常类型时,发现了一处通用的本地拒绝服务漏洞。该通用型本地拒绝服务可以造成大面积的app拒绝服务。
针对序列化对象而出现的拒绝服务主要
- HoverTree项目已经实现分层
hvt
编程.netWebC#ASP.ENT
HoverTree项目已经初步实现分层,源代码已经上传到 http://hovertree.codeplex.com请到SOURCE CODE查看。在本地用SQL Server 2008 数据库测试成功。数据库和表请参考:http://keleyi.com/a/bjae/ue6stb42.htmHoverTree是一个ASP.NET 开源项目,希望对你学习ASP.NET或者C#语言有帮助,如果你对
- Google Maps API v3: Remove Markers 移除标记
天梯梦
google maps api
Simply do the following:
I. Declare a global variable:
var markersArray = [];
II. Define a function:
function clearOverlays() {
for (var i = 0; i < markersArray.length; i++ )
- jQuery选择器总结
lq38366
jquery选择器
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
- 基础数据结构和算法六:Quick sort
sunwinner
AlgorithmQuicksort
Quick sort is probably used more widely than any other. It is popular because it is not difficult to implement, works well for a variety of different kinds of input data, and is substantially faster t
- 如何让Flash不遮挡HTML div元素的技巧_HTML/Xhtml_网页制作
刘星宇
htmlWeb
今天在写一个flash广告代码的时候,因为flash自带的链接,容易被当成弹出广告,所以做了一个div层放到flash上面,这样链接都是a触发的不会被拦截,但发现flash一直处于div层上面,原来flash需要加个参数才可以。
让flash置于DIV层之下的方法,让flash不挡住飘浮层或下拉菜单,让Flash不档住浮动对象或层的关键参数:wmode=opaque。
方法如下:
- Mybatis实用Mapper SQL汇总示例
wdmcygah
sqlmysqlmybatis实用
Mybatis作为一个非常好用的持久层框架,相关资料真的是少得可怜,所幸的是官方文档还算详细。本博文主要列举一些个人感觉比较常用的场景及相应的Mapper SQL写法,希望能够对大家有所帮助。
不少持久层框架对动态SQL的支持不足,在SQL需要动态拼接时非常苦恼,而Mybatis很好地解决了这个问题,算是框架的一大亮点。对于常见的场景,例如:批量插入/更新/删除,模糊查询,多条件查询,联表查询,