- 异构计算解决方案(兼容不同硬件架构)
ARM2NCWU
硬件架构
异构计算解决方案通过整合不同类型处理器(如CPU、GPU、NPU、FPGA等),实现硬件资源的高效协同与兼容,满足多样化计算需求。其核心技术与实践方案如下:一、硬件架构设计异构处理器组合主从协作模式:采用通用CPU(如ARMCortex-M3)作为主处理器,搭配专用协处理器(如MSP430微控制器)处理特定任务(如射频通信),通过串口/USB/以太网实现通信。众核架构:集成CPU、GPU、N
- 深度学习学习指南
努力的Lorre
深度学习人工智能
本帖子将以本书的逻辑和顺序做一个梳理:CS基础->AI算法->模型压缩->异构计算->AI框架->AI编译器《DeepLearningSystems》(https://deeplearningsystems.ai/)CS基础推荐书单所需的编程语言(C/C++、Python)就不多讲了,数据结构算法也是大学基础课程,不多赘述。对于操作系统需要多了解,推荐多看一看《深入理解计算机系统》(传说中的面试圣
- 复旦微ZYNQ SOC AXI_DMA高速数据传输实战指南
芯作者
D1:ZYNQ设计fpga开发
突破传统瓶颈:零拷贝+双缓冲实现2.4GB/s传输速率AXI_DMA在异构计算中的核心价值在复旦微ZYNQSOC系统中,AXI_DMA是连接PS(处理系统)和PL(可编程逻辑)的高速数据通道。本文通过创新性的零拷贝双缓冲架构,实现2.4GB/s的稳定传输速率,相比传统方案提升300%!我们将从硬件设计到软件优化,揭秘工业级DMA应用的完整开发流程。一、系统架构创新设计1.1传统DMA方案瓶颈分析方
- 深入实战:ZYNQ中AXI BRAM打通PS与PL数据交互的高速通道
芯作者
D1:ZYNQ设计fpga开发智能硬件硬件工程
在ZYNQ异构计算平台上,高效的数据交互是发挥PS(处理器系统)与PL(可编程逻辑)协同计算优势的关键。本文将深入探讨利用AXIBRAM控制器实现PS与PL间共享内存通信的方案,提供详实的代码、创新优化思路及性能分析,助你构建高速数据通道。一、为何选择AXIBRAM?在ZYNQ中,PS与PL交互的常用方式包括:AXIDMA:适合大数据流传输AXIGPIO:仅适合小数据量控制AXIBRAM:低延迟、
- 算力新纪元前夜:AI 算力架构迎来迭代升级,三大技术突破开启产业新局
Finehoo
人工智能架构
当AI算力需求以年均300%的增速冲击基础设施极限时,全球科技界正屏息以待英伟达2025年GTC大会的到来。这场将于3月17日启幕的技术盛会,或将成为AI算力架构从"量变"到"质变"的转折点。结合行业动态与技术演进趋势,三大突破性方向正浮出水面,预示着产业格局的深度重构。一、异构计算架构的范式突破随着大模型参数突破万亿级,传统冯・诺依曼架构的"内存墙"问题愈发凸显。英伟达BlackwellUltr
- RISC-V向量扩展与GPU协处理:开源加速器设计新范式——对比NVDLA与香山架构的指令集融合方案
点击“AladdinEdu,同学们用得起的【H卡】算力平台”,H卡级别算力,按量计费,灵活弹性,顶级配置,学生专属优惠当开源指令集遇上异构计算,RISC-V向量扩展(RVV)正重塑加速器设计范式。本文深入对比两大开源架构——NVIDIANVDLA与中科院香山处理器在指令集融合上的创新路径。01开源加速器生态的范式转移RISC-V向量扩展的核心突破RVV1.0标准带来三大革命性特性:1.**可伸缩向
- 算力协同创新与能效优化重构工业场景技术生态
智能计算研究中心
其他
内容概要工业智能化转型正推动算力技术生态的体系化重构,其核心在于通过异构计算与边缘计算的协同创新,构建适应复杂工业场景的动态算力基础设施。当前工业互联网平台中,约67%的实时决策场景依赖边缘节点完成数据处理,而深度学习模型训练等计算密集型任务则需依托云端异构计算集群实现资源优化配置。这种分层计算架构不仅降低网络传输延迟,更使工业设备预测性维护系统的响应速度提升至毫秒级。工业质检领域的技术突破印证了
- 鸿蒙开发实战之Function Flow Runtime Kit优化美颜相机AI流水线
harmonyos-next
一、架构设计突破针对美颜相机复杂的AI处理流程,FunctionFlowRuntimeKit实现三大创新:异构计算流水线CPU+GPU+NPU三端任务自动分配人脸识别→皮肤检测→背景分割→滤镜渲染四阶段并行智能调度策略二、核心代码实现importfunctionFlowfrom'@ohos.functionFlowKit';//定义处理节点constnodes=[{id:'face_detect'
- 海思昇腾/达芬奇架构在 Android 系统中的异构部署:NPU × CPU × GPU 联合调度与模型落地实践全流程解析
观熵
国产NPU×Android推理优化架构android
海思昇腾/达芬奇架构在Android系统中的异构部署:NPU×CPU×GPU联合调度与模型落地实践全流程解析关键词海思昇腾、达芬奇架构、AndroidNPU部署、NNIE、ACL、异构计算、张量融合、CANN、NNAPI、边缘AI、算子编译器摘要随着海思昇腾与达芬奇架构在智能终端中的广泛应用,其在Android系统下的AI能力调度、模型部署与异构算力融合需求日益迫切。昇腾SoC集成的NPU(达芬奇
- 开放创新,昇腾 CANN 再向深处
华为人工智能
AI领域有自己的速度。4月29日凌晨4点,Qwen3正式发布,并开源全部8款混合推理模型。发布仅2小时,Qwen3模型在GitHub上的Star数已近17k。更有趣的是,开源5小时后,华为计算发文宣布实现Qwen3的0Day适配,即在MindSpeed和MindIE中开箱即用。这意味着,开发者可以第一时间零门槛使用最新的AI能力。这样软硬件闪电协同的背后,华为昇腾异构计算架构CANN的深度开放策略
- 硬件异构环境(如 CPU+GPU 混合)下的任务调度策略,如何最大化资源利用率?
百态老人
算法机器学习人工智能
硬件异构环境(CPU+GPU混合)下的任务调度策略体系与资源利用率优化技术(2025版)一、异构计算环境的核心挑战在CPU+GPU混合架构中,最大化资源利用率的本质是解决三类矛盾:硬件能力差异矛盾:CPU通用性强但并行度低,GPU并行度高但逻辑处理能力弱资源动态性矛盾:任务负载波动与硬件资源状态的实时匹配同步效率矛盾:CPU-GPU间数据通信与任务协同的延迟损耗二、任务调度策略框架设计1.硬件特性
- 算力安全标准与异构芯片架构演进方向
智能计算研究中心
其他
内容概要随着人工智能、量子计算等前沿技术对算力需求的指数级增长,构建安全可控的算力基础设施已成为全球科技竞争的核心议题。当前算力体系正面临双重挑战:一方面,异构计算架构的快速演进推动了光子计算、神经形态计算等新型计算范式的突破;另一方面,工业互联网、医疗影像等高精度场景对算力可靠性提出了严苛要求。在此背景下,算力安全标准与芯片架构创新正形成双向驱动的技术生态。行业专家指出:"未来三年将是算力安全标
- 【异构计算架构】CPU/GPU/FPGA混合资源池
沐风—云端行者
云计算架构架构fpga开发云计算云原生
异构计算架构:CPU/GPU/FPGA混合资源池一、技术背景及发展二、技术特点三、技术实现细节四、未来发展趋势结语一、技术背景及发展随着摩尔定律逼近物理极限,单一架构的计算芯片已无法满足AI训练、科学计算、实时渲染等高并发、高吞吐场景的需求。异构计算通过整合多种指令集和体系结构的处理器(如CPU、GPU、FPGA),实现了“专业分工+协同增效”的计算范式。发展历程:早期阶段(2000年前):GPU
- FPGA × GPU 混合推理系统架构实战:协同执行链设计与性能对比分析
观熵
大模型高阶优化技术专题fpga开发系统架构人工智能
《FPGA×GPU混合推理系统架构实战:协同执行链设计与性能对比分析》关键词FPGA加速、GPU推理、混合部署架构、DPU调度、异构计算、协同执行链、推理任务分配、性能对比分析摘要在实际工程中,单一加速器已难以满足复杂AI场景下对低延迟与高吞吐的双重要求。本文基于真实部署实践,系统分析了FPGA与GPU混合推理系统的协同架构设计,深入解析DPU与CUDA引擎在异构平台中的任务调度路径、特征数据交换
- 零基础学习GPU 系统软件资源(7.4)--未来趋势与前沿技术:新型架构的软件适配
xiaoheshang_123
学习架构simulink
目录第七章:未来趋势与前沿技术新型架构的软件适配1.CXL协议对GPU缓存一致性的影响(1)CXL协议的核心特性(2)GPU缓存一致性的挑战与解决方案(3)性能影响与适用场景2.DPU加速下的GPU资源卸载场景(1)DPU的核心功能(2)GPU资源卸载的技术实现(3)性能优势与典型应用3.技术挑战与未来方向(1)当前挑战(2)未来趋势4.总结第七章:未来趋势与前沿技术新型架构的软件适配随着异构计算
- V100赋能智能能源管理算力跃迁
智能计算研究中心
其他
内容概要能源行业的数字化转型正面临算力需求与系统复杂性双重挑战。传统能源管理架构受限于数据处理速度与算法精度,难以支撑实时调度与动态优化需求。V100芯片通过异构计算架构与大规模并行处理能力的革新,将单精度浮点运算性能提升至15.7TFLOPS,为能源系统构建起具备自我进化能力的数字底座。技术建议:能源企业在部署智能管理系统时,需重点关注数据采集频率与算法迭代周期的匹配度,建议采用动态负载均衡策略
- 边缘AI推理突破:树莓派5运行Llama3-13B的异构计算极致优化指南
尘烬海
人工智能分布式risc-v网络架构
引言:边缘大语言模型推理的挑战在边缘计算设备上部署13B参数级大语言模型(LLM)面临三重挑战:算力瓶颈:ARMCortex-A76CPU峰值算力仅0.5TFLOPS,远低于GPU服务器内存墙限制:8GBLPDDR4X内存难以容纳原始FP16模型(约26GB)能耗约束:5WTDP下需平衡性能与散热本文将深入探讨基于树莓派5的Llama3-13B量化部署方案,实现token生成速度>2.5token
- 一码多芯+全能工具链:鲲鹏携手国产xPU,开发者如何轻松玩转AI推理?
CSDN资讯
人工智能
AI时代,模型深度思考商业价值渐显,推理需求正驱动计算架构剧变。近日,鲲鹏昇腾开发者大会2025(KADC2025)成功举办。在鲲鹏开发者峰会上,华为正式发布了针对异构计算挑战的核心力作——鲲鹏+xPU推理解决方案。作为华为“鲲鹏AI+解决方案”的重要构成,该方案旨在解决开发者在AI应用,特别是推理场景中面临的异构算力协同难、硬件资源利用率不足以及多平台开发维护复杂等痛点,为开发者提供一个高效、灵
- 深入剖析ZYNQ Linux动态PL配置:xdevcfg驱动创新实践指南
芯作者
D1:ZYNQ设计fpga开发
一、ZYNQ动态重配置技术解析1.1可编程逻辑的革命性价值XilinxZYNQ系列SoC的划时代设计将ARM处理系统(PS)与FPGA可编程逻辑(PL)深度融合,创造出独特的异构计算架构。传统FPGA开发模式中,比特流烧写需要停机操作,而动态重配置技术彻底打破了这一限制,使得:工业设备可在线切换通信协议(Modbus/Profinet/EtherCAT)机器视觉系统动态加载不同图像处理流水线5G基
- ARMv9 架构演进下的 AI 异构能力增强方向解析:从 CPU 到系统级智能算力协同
观熵
国产NPU×Android推理优化架构人工智能androidArmv9
ARMv9架构演进下的AI异构能力增强方向解析:从CPU到系统级智能算力协同关键词ARMv9、异构计算、SVE2、AI推理优化、NPU融合、安全隔离计算、AndroidSoC、DSP协同、MemoryTagging、系统级AI加速、边缘AI摘要ARMv9架构自发布以来,持续推动边缘计算平台向“系统级智能处理”方向演进。2024至2025年期间,主流SoC厂商(如高通、联发科、三星、华为、苹果)均已
- 优化异构计算平台:hStreams框架的深度解析
你好像一条狗啊
异构计算hStreams框架流并发矩阵乘法性能优化
优化异构计算平台:hStreams框架的深度解析背景简介在异构计算领域,如何合理地分配和管理计算资源以优化性能是一个关键问题。本章节通过介绍hStreams框架,深入探讨了在异构计算平台中如何通过控制流并发和资源分配来提升矩阵乘法等计算任务的效率。异构计算与流并发异构计算通常涉及多种类型的处理器和加速器,如CPU和协处理器。通过合理配置这些资源,可以在不同的计算域中实现更高的并发性。在hStrea
- Atlas500------开发环境部署(一)
csrookiee
模型迁移ubuntulinux
参考https://support.huaweicloud.com/instg-ascend-deployer-cann330/atlasdeploy_03_0088.html1.开发环境部署CANN(ComputeArchitectureforNeuralNetworks)是华为公司针对AI场景推出的异构计算架构,通过提供多层次的编程接口,支持用户快速构建基于昇腾平台的AI应用和业务。1、通过离
- AI 芯片与异构计算在 Android 端的实战深度解析:国产 NPU 架构、NNAPI 编程与性能调优路径全景
观熵
智能终端Ai探索与创新实践人工智能android架构
AI芯片与异构计算在Android端的实战深度解析:国产NPU架构、NNAPI编程与性能调优路径全景关键词AndroidAI芯片、异构计算、NPU架构、NNAPI实战、国产手机SoC、AI加速器、模型部署优化、移动端推理、芯片编程接口、终端侧智能计算摘要随着国产手机厂商加速推进自研AI芯片布局,移动端AI正进入NPU主导的异构计算时代。在Android生态中,如何充分发挥CPU、GPU、NPU、D
- 铁路信号控制单元技术方案:基于EFISH-SCB-RK3588/SAIL-RK3588的国产化替代全场景解析
电鱼智能
RK3588技术方案fpga开发linux嵌入式硬件实时音视频网络
一、核心硬件选型与替代优势1.高可靠性与实时控制异构计算架构:4×Cortex-A76(2.4GHz)运行联锁逻辑运算,4×Cortex-A55(1.8GHz)处理轨道电路状态监测,多任务并发响应延迟比赛扬N系列降低65%。硬件级冗余设计:双千兆网口(支持TSN时间敏感网络)实现主备通道切换(延迟≤50ms),满足铁路信号系统EN50159安全通信标准。2.工业级接口与扩展能力
- 工业传感器数据汇聚网关技术方案:基于EFISH-SCB-RK3588/SAIL-RK3588的国产化替代全场景解析
电鱼智能
RK3588技术方案机器人neo4j嵌入式硬件网络web安全
一、核心硬件选型与替代优势1.异构计算与数据处理能力八核架构:4×Cortex-A76(2.4GHz)+4×Cortex-A55(1.8GHz)支持多协议解析(如Modbus、OPCUA)与边缘计算并行处理,协议转换效率比赛扬N系列提升80%。NPU加速:集成6TOPS算力NPU,支持时序数据异常检测(基于LSTM模型)、传感器数据清洗(如滤波去噪),边缘推理能耗降低60%。
- AI大模型的训练与优化
Jc.MJ
人工智能深度学习机器学习
AI大模型的训练与优化前言摘要1.计算资源分配与管理1.1分布式训练技术1.2异构计算策略1.3资源利用率监控与调优2.参数调优与正则化方法2.1学习率调度策略2.2正则化方法3.模型压缩与优化3.1模型剪枝(ModelPruning)3.2模型量化(ModelQuantization)3.3低秩近似(Low-RankApproximation)4.高效的训练算法4.1自然语言处理(NLP)4.2
- QT案例(三)基于QT和opencv的视频播放器
dtge
Qt学习笔记qtopencv音视频
简介OpenCV(开源的计算机视觉库)是基于BSD协议,因此它可免费用于学术和商业用途。其提供C++,C,Python和Java接口,支持Windows,Linux,MacOS,iOS和Android。OpenCV致力于高效运算和即时应用开发。因其是用优化的C/C++编写的,故其可以充分利用多核处理优势。并且还启用了OpenSL,它可以利用底层异构计算平台的硬件加速。广泛运用在世界各地,OpenC
- 超越CUDA:ROCm与oneAPI在异构计算中的性能对比实验(国产GPU生态下的开发路径探索)
学术猿之吻
人工智能高校GPU人工智能线性代数深度学习量子计算gpu算力ai机器学习
一、异构计算生态的竞争格局当前异构计算领域呈现“一超多强”格局:英伟达凭借CUDA生态占据90%以上的AI训练市场份额,而AMD的ROCm与英特尔的oneAPI通过差异化技术路线持续挑战其垄断地位。二者在国产GPU生态建设中展现出独特价值——ROCm:基于开源架构,支持MI系列计算卡和部分消费级显卡,通过HIP兼容层实现CUDA代码迁移,降低开发者学习成本oneAPI:以DPC
- 基于 EFISH-SBC-RK3588 的无人机环境感知与数据采集方案
电鱼智能
3588无人机数码相机嵌入式硬件linux边缘计算网络
一、核心硬件架构设计高性能算力引擎(RK3588处理器)异构计算架构:集成8核CPU(4×
[email protected]+4×
[email protected]),支持动态调频与多任务并行处理,单线程性能较传统四核方案提升80%。NPU加速:6TOPS独立NPU(支持INT8/FP16混合运算),可直接部署YOLOv5、ResNet50等模型,实时处理激光雷达点云、多光谱图像等
- 基于 EFISH-SBC-RK3588 的无人机通信云端数据处理模块方案
电鱼智能
无人机边缘计算人工智能嵌入式硬件linux网络
一、硬件架构设计核心计算单元(EFISH-SBC-RK3588)异构计算能力:搭载8核ARM架构(4×
[email protected]+4×
[email protected]),集成6TOPSNPU与Mali-G610GPU,支持多任务并行处理(AI推理、视频编码、协议解析)。通信接口扩展:PCIe3.0:外接5G模组(如QuectelRM500Q),支持SA/NSA双模组网,上
- 枚举的构造函数中抛出异常会怎样
bylijinnan
javaenum单例
首先从使用enum实现单例说起。
为什么要用enum来实现单例?
这篇文章(
http://javarevisited.blogspot.sg/2012/07/why-enum-singleton-are-better-in-java.html)阐述了三个理由:
1.enum单例简单、容易,只需几行代码:
public enum Singleton {
INSTANCE;
- CMake 教程
aigo
C++
转自:http://xiang.lf.blog.163.com/blog/static/127733322201481114456136/
CMake是一个跨平台的程序构建工具,比如起自己编写Makefile方便很多。
介绍:http://baike.baidu.com/view/1126160.htm
本文件不介绍CMake的基本语法,下面是篇不错的入门教程:
http:
- cvc-complex-type.2.3: Element 'beans' cannot have character
Cb123456
springWebgis
cvc-complex-type.2.3: Element 'beans' cannot have character
Line 33 in XML document from ServletContext resource [/WEB-INF/backend-servlet.xml] is i
- jquery实例:随页面滚动条滚动而自动加载内容
120153216
jquery
<script language="javascript">
$(function (){
var i = 4;$(window).bind("scroll", function (event){
//滚动条到网页头部的 高度,兼容ie,ff,chrome
var top = document.documentElement.s
- 将数据库中的数据转换成dbs文件
何必如此
sqldbs
旗正规则引擎通过数据库配置器(DataBuilder)来管理数据库,无论是Oracle,还是其他主流的数据都支持,操作方式是一样的。旗正规则引擎的数据库配置器是用于编辑数据库结构信息以及管理数据库表数据,并且可以执行SQL 语句,主要功能如下。
1)数据库生成表结构信息:
主要生成数据库配置文件(.conf文
- 在IBATIS中配置SQL语句的IN方式
357029540
ibatis
在使用IBATIS进行SQL语句配置查询时,我们一定会遇到通过IN查询的地方,在使用IN查询时我们可以有两种方式进行配置参数:String和List。具体使用方式如下:
1.String:定义一个String的参数userIds,把这个参数传入IBATIS的sql配置文件,sql语句就可以这样写:
<select id="getForms" param
- Spring3 MVC 笔记(一)
7454103
springmvcbeanRESTJSF
自从 MVC 这个概念提出来之后 struts1.X struts2.X jsf 。。。。。
这个view 层的技术一个接一个! 都用过!不敢说哪个绝对的强悍!
要看业务,和整体的设计!
最近公司要求开发个新系统!
- Timer与Spring Quartz 定时执行程序
darkranger
springbean工作quartz
有时候需要定时触发某一项任务。其实在jdk1.3,java sdk就通过java.util.Timer提供相应的功能。一个简单的例子说明如何使用,很简单: 1、第一步,我们需要建立一项任务,我们的任务需要继承java.util.TimerTask package com.test; import java.text.SimpleDateFormat; import java.util.Date;
- 大端小端转换,le32_to_cpu 和cpu_to_le32
aijuans
C语言相关
大端小端转换,le32_to_cpu 和cpu_to_le32 字节序
http://oss.org.cn/kernel-book/ldd3/ch11s04.html
小心不要假设字节序. PC 存储多字节值是低字节为先(小端为先, 因此是小端), 一些高级的平台以另一种方式(大端)
- Nginx负载均衡配置实例详解
avords
[导读] 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。负载均衡先来简单了解一下什么是负载均衡,单从字面上的意思来理解就可以解 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。
负载均衡
先来简单了解一下什么是负载均衡
- 乱说的
houxinyou
框架敏捷开发软件测试
从很久以前,大家就研究框架,开发方法,软件工程,好多!反正我是搞不明白!
这两天看好多人研究敏捷模型,瀑布模型!也没太搞明白.
不过感觉和程序开发语言差不多,
瀑布就是顺序,敏捷就是循环.
瀑布就是需求、分析、设计、编码、测试一步一步走下来。而敏捷就是按摸块或者说迭代做个循环,第个循环中也一样是需求、分析、设计、编码、测试一步一步走下来。
也可以把软件开发理
- 欣赏的价值——一个小故事
bijian1013
有效辅导欣赏欣赏的价值
第一次参加家长会,幼儿园的老师说:"您的儿子有多动症,在板凳上连三分钟都坐不了,你最好带他去医院看一看。" 回家的路上,儿子问她老师都说了些什么,她鼻子一酸,差点流下泪来。因为全班30位小朋友,惟有他表现最差;惟有对他,老师表现出不屑,然而她还在告诉她的儿子:"老师表扬你了,说宝宝原来在板凳上坐不了一分钟,现在能坐三分钟。其他妈妈都非常羡慕妈妈,因为全班只有宝宝
- 包冲突问题的解决方法
bingyingao
eclipsemavenexclusions包冲突
包冲突是开发过程中很常见的问题:
其表现有:
1.明明在eclipse中能够索引到某个类,运行时却报出找不到类。
2.明明在eclipse中能够索引到某个类的方法,运行时却报出找不到方法。
3.类及方法都有,以正确编译成了.class文件,在本机跑的好好的,发到测试或者正式环境就
抛如下异常:
java.lang.NoClassDefFoundError: Could not in
- 【Spark七十五】Spark Streaming整合Flume-NG三之接入log4j
bit1129
Stream
先来一段废话:
实际工作中,业务系统的日志基本上是使用Log4j写入到日志文件中的,问题的关键之处在于业务日志的格式混乱,这给对日志文件中的日志进行统计分析带来了极大的困难,或者说,基本上无法进行分析,每个人写日志的习惯不同,导致日志行的格式五花八门,最后只能通过grep来查找特定的关键词缩小范围,但是在集群环境下,每个机器去grep一遍,分析一遍,这个效率如何可想之二,大好光阴都浪费在这上面了
- sudoku solver in Haskell
bookjovi
sudokuhaskell
这几天没太多的事做,想着用函数式语言来写点实用的程序,像fib和prime之类的就不想提了(就一行代码的事),写什么程序呢?在网上闲逛时发现sudoku游戏,sudoku十几年前就知道了,学生生涯时也想过用C/Java来实现个智能求解,但到最后往往没写成,主要是用C/Java写的话会很麻烦。
现在写程序,本人总是有一种思维惯性,总是想把程序写的更紧凑,更精致,代码行数最少,所以现
- java apache ftpClient
bro_feng
java
最近使用apache的ftpclient插件实现ftp下载,遇见几个问题,做如下总结。
1. 上传阻塞,一连串的上传,其中一个就阻塞了,或是用storeFile上传时返回false。查了点资料,说是FTP有主动模式和被动模式。将传出模式修改为被动模式ftp.enterLocalPassiveMode();然后就好了。
看了网上相关介绍,对主动模式和被动模式区别还是比较的模糊,不太了解被动模
- 读《研磨设计模式》-代码笔记-工厂方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 工厂方法模式:使一个类的实例化延迟到子类
* 某次,我在工作不知不觉中就用到了工厂方法模式(称为模板方法模式更恰当。2012-10-29):
* 有很多不同的产品,它
- 面试记录语
chenyu19891124
招聘
或许真的在一个平台上成长成什么样,都必须靠自己去努力。有了好的平台让自己展示,就该好好努力。今天是自己单独一次去面试别人,感觉有点小紧张,说话有点打结。在面试完后写面试情况表,下笔真的好难,尤其是要对面试人的情况说明真的好难。
今天面试的是自己同事的同事,现在的这个同事要离职了,介绍了我现在这位同事以前的同事来面试。今天这位求职者面试的是配置管理,期初看了简历觉得应该很适合做配置管理,但是今天面
- Fire Workflow 1.0正式版终于发布了
comsci
工作workflowGoogle
Fire Workflow 是国内另外一款开源工作流,作者是著名的非也同志,哈哈....
官方网站是 http://www.fireflow.org
经过大家努力,Fire Workflow 1.0正式版终于发布了
正式版主要变化:
1、增加IWorkItem.jumpToEx(...)方法,取消了当前环节和目标环节必须在同一条执行线的限制,使得自由流更加自由
2、增加IT
- Python向脚本传参
daizj
python脚本传参
如果想对python脚本传参数,python中对应的argc, argv(c语言的命令行参数)是什么呢?
需要模块:sys
参数个数:len(sys.argv)
脚本名: sys.argv[0]
参数1: sys.argv[1]
参数2: sys.argv[
- 管理用户分组的命令gpasswd
dongwei_6688
passwd
NAME: gpasswd - administer the /etc/group file
SYNOPSIS:
gpasswd group
gpasswd -a user group
gpasswd -d user group
gpasswd -R group
gpasswd -r group
gpasswd [-A user,...] [-M user,...] g
- 郝斌老师数据结构课程笔记
dcj3sjt126com
数据结构与算法
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
- yii2 cgridview加上选择框进行操作
dcj3sjt126com
GridView
页面代码
<?=Html::beginForm(['controller/bulk'],'post');?>
<?=Html::dropDownList('action','',[''=>'Mark selected as: ','c'=>'Confirmed','nc'=>'No Confirmed'],['class'=>'dropdown',])
- linux mysql
fypop
linux
enquiry mysql version in centos linux
yum list installed | grep mysql
yum -y remove mysql-libs.x86_64
enquiry mysql version in yum repositoryyum list | grep mysql oryum -y list mysql*
install mysq
- Scramble String
hcx2013
String
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great":
- 跟我学Shiro目录贴
jinnianshilongnian
跟我学shiro
历经三个月左右时间,《跟我学Shiro》系列教程已经完结,暂时没有需要补充的内容,因此生成PDF版供大家下载。最近项目比较紧,没有时间解答一些疑问,暂时无法回复一些问题,很抱歉,不过可以加群(334194438/348194195)一起讨论问题。
----广告-----------------------------------------------------
- nginx日志切割并使用flume-ng收集日志
liyonghui160com
nginx的日志文件没有rotate功能。如果你不处理,日志文件将变得越来越大,还好我们可以写一个nginx日志切割脚本来自动切割日志文件。第一步就是重命名日志文件,不用担心重命名后nginx找不到日志文件而丢失日志。在你未重新打开原名字的日志文件前,nginx还是会向你重命名的文件写日志,linux是靠文件描述符而不是文件名定位文件。第二步向nginx主
- Oracle死锁解决方法
pda158
oracle
select p.spid,c.object_name,b.session_id,b.oracle_username,b.os_user_name from v$process p,v$session a, v$locked_object b,all_objects c where p.addr=a.paddr and a.process=b.process and c.object_id=b.
- java之List排序
shiguanghui
list排序
在Java Collection Framework中定义的List实现有Vector,ArrayList和LinkedList。这些集合提供了对对象组的索引访问。他们提供了元素的添加与删除支持。然而,它们并没有内置的元素排序支持。 你能够使用java.util.Collections类中的sort()方法对List元素进行排序。你既可以给方法传递
- servlet单例多线程
utopialxw
单例多线程servlet
转自http://www.cnblogs.com/yjhrem/articles/3160864.html
和 http://blog.chinaunix.net/uid-7374279-id-3687149.html
Servlet 单例多线程
Servlet如何处理多个请求访问?Servlet容器默认是采用单实例多线程的方式处理多个请求的:1.当web服务器启动的