- Prometheus监控数据类型
xianyuLuo.
kubernetesprometheus
Prometheus监控数据类型类型特点常用命名常用函数Counter计数器,只增不减*_total*_sum*_countrate:求增长率topk:Top前N的信息Gauge反映当前状态,可增可减一般不带后缀直接使用指标,表示当前状态delta:可以获取样本在一段时间返回内的变化情况predict_linear:数据的变化趋势进行预测Histogram/Summary数据分区间计算带指标的总和
- 1、Java 环境搭建与基本概念:开启 Java 编程之旅的第一步
翻晒时光
从0学Javajava开发语言
大家好,欢迎来到我们的Java学习系列博客,今天是第一课,我们将一起探索Java环境搭建与基本概念。无论你是编程新手,还是想要学习一门新语言的老手,Java都是一个非常值得学习的语言,它在众多领域都有着广泛的应用,从企业级软件开发、安卓应用开发到大数据处理,都能看到Java的身影。让我们开始这充满挑战与乐趣的Java学习之旅吧!一、Java的发展历程与特点Java诞生于SunMicrosystem
- AI引领工业制造智能化革命:机器视觉与时序数据预测的双重驱动
火山说数
人工智能制造
AI在工业制造的应用正在经历从传统自动化向智能化的巨大飞跃。在众多AI技术中,基于机器视觉的工业辅助检测和基于时序数据的智能预测,毫无疑问是目前备受关注的两个重要方向。它们不仅极大提升了生产效率,还通过精准的决策和实时监控,推动着各行各业的智能转型。一、基于机器视觉的工业辅助检测:让机器的眼睛比人类更聪明如果你曾经站在生产线旁边,眼睛盯着一个个小零件,试图快速判断它们的质量,你应该知道那种疲惫和压
- 如何优化物流库存规划?4个工具助力精准需求预测与资源配置
物流系统团队协作
在物流管理的庞大体系中,库存管理占据着举足轻重的地位。它不仅直接影响着企业的运营成本和客户服务水平,还与整个供应链的稳定性和效率紧密相连。从库存的规划、采购、存储到配送,每一个环节都需要精细把控,以实现资源的优化配置和效益的最大化。接下来,我们将深入探讨物流库存管理中的关键要点、相关实用工具以及风险应对策略,尤其会着重突出板栗看板在其中的重要作用。一、物流库存管理流程解析(一)库存规划与需求预测库
- 大数据:数字时代的变革引擎
大数据
在当今这个数字化飞速发展的时代,大数据无疑是最为耀眼的存在,如同变革的引擎,驱动着各个领域的创新与发展。大数据的起源可追溯到信息技术发展的早期阶段。随着计算机的诞生和数据存储技术的逐步发展,人们开始积累越来越多的数据。然而,早期的数据量相对较小,处理和分析技术也较为有限。直到互联网的普及,数据的产生方式发生了根本性的变化。网站、搜索引擎、社交媒体等互联网应用的兴起,使得数据量呈爆炸式增长。每天,全
- 奇墨FinOps智慧财务(云成本优化):五步实现最优财务管理
奇墨 ITQM
云计算
IT部门是企业中开销最大的部门之一,IT部门面临的严峻考验之一是如何精细化管理IT的财务投资。IT财务管理作为企业管理组织财务资源的一种方法,在IT服务领域扮演着关键的角色。其涵盖的范围涉及预算管理、IT财务智能分账、费用预测、预算规划、费用异常监控等多个方面,直接关系到IT服务的财务管理和业务整体运作和企业云成本优化。.财务管理:明确IT的成本奇墨FinOps智慧财务中的财务管理模块,帮助企业实
- 【Redis】使用redis-cli的“--bigkeys”选项查找大Key
奇墨 ITQM
redis数据库缓存
在Redis的使用过程中,我们经常会遇到BigKey(下文将其称为“大key”)及HotKey(下文将其称为“热key”)。大Key与热Key如果未能及时发现并进行处理,很可能会使服务性能下降、用户体验变差,甚至引发大面积故障。下面将为大家介绍大Key的定义及查找方法:一、什么是大Key?通常我们会将含有较大数据或含有大量成员、列表数的Key称之为大Key,下面我们将用几个实际的例子对大Key的特
- 飞轮科技荣获中国电信星海大数据最佳合作伙伴奖!
近日,由中国电信集团数据发展中心主办的数据要素合作论坛在广州召开。大会以“数聚共生·智启未来”为主题,旨在展示数据要素应用成果,探索数据要素创新实践。与会期间,为了感谢2024年生态合作伙伴对中国电信数据业务发展工作的支持,会议举行了“星海大数据·最佳合作伙伴奖”颁奖仪式。飞轮科技凭借其在数据分析领域的卓越表现与深厚实力,获得这一殊荣。作为中国电信的长期合作伙伴,飞轮科技持续致力于为中国电信提供先
- 用大数据“喂养”出来的AI模型ChatGPT 爆火是大数据、大算力、强算法的支撑,中国缺乏的什么?
Ai17316391579
深度学习服务器人工智能
先来了解一下ChatGPT的基本情况ChatGPT本质属于生成式人工智能,属于无监督或半监督的机器学习。与之相关的还有Discriminativemodeling区分式模型,区分式模型大多属于监督式学习。生成性人工智能目前有两种主要的框架:GAN(GenerativeAdversarialNetwork)和GPT(GenerativePre-trainedTransformer)。GAN目前广泛应
- 132道系统架构面试八股文(答案、分析和深入提问)整理
ocean2103
面试题系统架构面试职场和发展
1.谈一谈缓存穿透、缓存击穿和缓存雪崩,以及解决办法回答在系统架构中,缓存是一种重要的性能优化手段,但在实际使用中可能会遭遇一些问题,如缓存穿透、缓存击穿和缓存雪崩。下面分别解释这三种现象及其解决方法。1.缓存穿透定义:缓存穿透是指用户请求的数据在缓存和数据库中都不存在,导致每次请求都直接查询数据库,造成对数据库的压力。解决办法:参数校验:在请求到达缓存和数据库之前,进行参数校验,拒绝无效请求。使
- 大数据学习(37)- Flink运行时架构
viperrrrrrr
学习flink大数据
&&大数据学习&&系列专栏:哲学语录:承认自己的无知,乃是开启智慧的大门如果觉得博主的文章还不错的话,请点赞+收藏⭐️+留言支持一下博主哦1)作业管理器(JobManager)JobManager是一个Flink集群中任务管理和调度的核心,是控制应用执行的主进程。也就是说,每个应用都应该被唯一的JobManager所控制执行。JobManger又包含3个不同的组件。(1)JobMasterJobM
- 【锂电池寿命】基于BP锂电池寿命预测(matlab)
大橘科研工作室
毕设锂电池方向(MATLAB版)matlab
【锂电池寿命】基于BP锂电池寿命预测(matlab)文章目录【锂电池寿命】基于BP锂电池寿命预测(matlab)一、引言1.1、研究背景1.2、研究意义二、文献综述2.1、锂电池寿命预测研究现状2.2、常见预测方法对比2.3、BP神经网络在寿命预测中的应用三、研究方法与数据准备3.1、BP神经网络模型设计3.2、数据来源与预处理3.3、特征提取与选择四、模型训练与验证4.1、训练过程4.2、模型验
- BP神经网络概述及其预测的Python和MATLAB实现
追蜻蜓追累了
神经网络回归算法深度学习机器学习启发式算法lstmgru
##一、背景###1.1人工神经网络的起源人工神经网络(ArtificialNeuralNetwork,ANN)受生物神经网络的启发,模拟大脑神经元之间的连接和信息处理方式。尽管早在1943年就有学者如McCulloch和Pitts提出了数学模型,但人工神经网络真正被广泛研究是在20世纪80年代。###1.2BP神经网络的兴起反向传播(BackPropagation,简称BP)算法是20世纪80年
- DolphinScheduler × Jiron:打造高效智能的数据调度新生态
jiron开源
平台开发flink大数据hadoophivesqoopspringcloudsentinel
JironGitHub地址https://github.com/642933588/jiron-cloudhttps://gitee.com/642933588/jiron-cloudDolphinScheduler×Jiron:打造高效智能的数据调度新生态DolphinScheduler是一个开源的分布式任务调度平台,专为大数据场景下的工作流调度和数据治理而设计。将DolphinSchedule
- 一种时序数据模式演化的跟踪与查询方法
米朵儿技术屋
智能科学与技术专栏分类学习数据挖掘
摘要在物联网与大数据应用蓬勃发展的背景下,各类感知设备产生海量的时序数据,设备管理软件版本的快速迭代导致时序数据的模式演化问题日益凸显.模式演化要求对数据模式进行版本管理,使数据进行模式变更时不产生信息损失,且支持对数据跨模式版本进行读写操作.结合流行的时序数据库管理系统,调研总结了各类数据库管理系统对模式演化的支持情况,对时序数据及其模式进行了形式化表述,对其模式演化的过程进行了分析,设计了一种
- FPGA在高速数据采集系统中的应用!!!
FPGA资料库
fpga开发fpgaverilog物联网stm32
FPGA(现场可编程门阵列)在高速数据采集系统中的应用非常广泛,主要得益于其并行处理能力、可编程性和高速接口特性。以下是FPGA在高速数据采集系统中的详细应用,以及一些具体例子:1.应用背景高速数据采集系统通常用于需要高采样率和大数据量处理的场合,如雷达信号处理、医疗成像、高速通信等。FPGA因其独特的硬件架构,能够有效处理高速数据流,因此在这些系统中扮演着关键角色。2.应用内容2.1数据采集接口
- Python气象数据分析:风速预报订正、台风预报数据智能订正、机器学习预测风电场的风功率、浅水模型、预测ENSO等
小艳加油
大气科学python人工智能气象机器学习
目录专题一Python和科学计算基础专题二机器学习和深度学习基础理论和实操专题三气象领域中的机器学习应用实例专题四气象领域中的深度学习应用实例更多应用Python是功能强大、免费、开源,实现面向对象的编程语言,在数据处理、科学计算、数学建模、数据挖掘和数据可视化方面具备优异的性能,这些优势使得Python在气象、海洋、地理、气候、水文和生态等地学领域的科研和工程项目中得到广泛应用。可以预见未来Py
- 深度学习笔记——模型部署
好评笔记
深度学习笔记深度学习笔记人工智能transformer模型部署大模型部署大模型
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文简要概括模型部署的知识点,包括步骤和部署方式。文章目录模型部署模型部署的关键步骤常见的模型部署方式优势与挑战总结边缘端部署方案总结历史文章机器学习深度学习模型部署模型部署是指将训练好的机器学习或深度学习模型集成到生产环境中,使其能够在实际应用中处理实时数据和提供预测服务。模型部署的流程涉及模型的封装、部署环境的选择、部
- 探索泰坦尼克号生存分类数据集:机器学习与数据分析的完美起点
岑童嵘
探索泰坦尼克号生存分类数据集:机器学习与数据分析的完美起点【下载地址】泰坦尼克号生存分类数据集本仓库提供了一个经典的机器学习数据集——泰坦尼克号生存分类数据集。该数据集包含两个CSV文件:训练集和测试集。数据集主要用于训练和评估机器学习模型,以预测泰坦尼克号乘客的生存情况项目地址:https://gitcode.com/open-source-toolkit/35561项目介绍泰坦尼克号生存分类数
- Python在WRF模型自动化运行及前后处理中实践技术应用-包括数据处理、模型运行、结果可视化等步骤。
KY_chenzhao
python自动化开发语言
1.背景与目标WRF(WeatherResearchandForecasting)模型是中尺度气象数值模式的佼佼者,广泛应用于气象预报和气候研究。Python在WRF模型中的应用主要体现在前后处理、自动化运行和数据可视化等方面。本文将以风速预测为例,详细说明Python在WRF模型中的具体应用,包括数据处理、模型运行、结果可视化等步骤。2.数据准备数据来源包括WRF模型的输出数据和实际观测数据。这
- 基于Python机器学习、深度学习技术提升气象、海洋、水文领域实践应用
KY_chenzhao
python机器学习深度学习气象
1.背景与目标ENSO(ElNiño-SouthernOscillation)是全球气候系统中最显著的年际变率现象之一,对全球气候、农业、渔业等有着深远的影响。准确预测ENSO事件的发生和发展对于减灾防灾具有重要意义。近年来,深度学习技术在气象领域得到了广泛应用,其中长短期记忆网络(LSTM)因其在处理时间序列数据方面的优势,被广泛用于ENSO预测。2.数据准备数据来源包括NOAA(美国国家海洋和
- AI时代:前端工程师和数学家真的要失业了吗?
前端
ExaCEO威廉·布里克近日发布的惊人预测在科技界引发轩然大波:他认为前端工程师将在三年内消失,而数学家则只有700天的时间。这一预测并非危言耸听,它反映了AI代码生成器等AI技术高速发展带来的巨大行业冲击。本文将深入探讨AI技术对前端开发和数学领域的影响,以及由此带来的机遇与挑战。前端开发行业的AI革命布里克的预测并非空穴来风。近年来,众多AI写代码工具如雨后春笋般涌现,例如ScriptEcho
- Python中的Pipeline快速教学、
Coding Is Fun
python开发语言
在Python中,Pipeline通常指的是机器学习工作流中的流水线,尤其是在使用scikit-learn库时。Pipeline允许你将多个数据处理步骤和模型训练步骤串联起来,形成一个有序的工作流程。这不仅使代码更简洁,还能确保在训练和预测时一致的数据处理。以下是一个快速教学,帮助你掌握Python中Pipeline的核心概念和使用方法。目录安装和导入必要的库Pipeline的基本概念创建一个简单
- BP神经网络及其Python和MATLAB实现预测
陈辰学长
神经网络pythonmatlab
BP神经网络及其Python和MATLAB实现预测引言BP神经网络(BackPropagationNeuralNetwork),即反向传播神经网络,是一种通过反向传播算法进行监督学习的多层前馈网络。这种网络能够通过不断地调整和改变神经元的连接权重,达到对特定任务的学习和优化。由于其高度的灵活性和适应性,BP神经网络在模式识别、函数逼近、优化问题等多个领域有着广泛的应用。本文将详细介绍BP神经网络的
- 保护你的会话令牌
博文视点
信息安全技术ESAPIOWASPTop10webWebWEB会话安全
保护你的会话令牌通常我们会采取以下的措施来保护会话。1.采用强算法生成SessionID正如我们前面用WebScrab分析的那样,会话ID必须具有随机性和不可预测性。一般来说,会话ID的长度至少为128位。下面我们就拿常见的应用服务器Tomcat来说明如何配置会话ID的长度和生成算法。首先我们找到{TOMCAT_HOME}\conf\context.xml,然后加入下面一段设置➊定义会话ID的长度
- Mysql数据库和Sql语句
Jessica小戴
数据库mysqlsql
数据库管理:sql语句:数据库用来增删改查的语句(重要)备份:数据库的数据进行备份主从复制、读写分离、高可用(重要)Mysql数据库和Sql语句一、Mysql数据库1、数据库:组织、存储、管理数据的仓库2、数据库的管理系统(DBMS):实现对数据有效组织、管理和存取的系统软件3、数据库软件:mysql、oracle(大数据系统一般使用、大企业使用)、sql-server、MariaDB也是mysq
- 大模型介绍
詹姆斯爱研究Java
spring
大模型(LargeModel)指的是拥有庞大参数量的机器学习模型。由于具有更多的参数,大模型能够更好地拟合复杂的数据和模式,从而提供更准确的预测和更好的性能。大模型的参数量通常远远超过常规模型,可以达到数百万甚至数十亿个参数。这些参数通常通过深度神经网络(DeepNeuralNetwork)来表示,包括多个隐藏层和大量的神经元。大模型的训练需要大量的计算资源和数据。通常,它们需要在多个GPU或TP
- 基于深度学习的极端天气预测全解析与实战指南:基于MetNet 模型
AI_DL_CODE
深度学习人工智能MetNet天气预测python
摘要:本文全面解析了基于深度学习的极端天气预测,重点介绍了MetNet模型。首先,文章阐述了极端天气预测的重要性和传统天气预报的局限性。接着,详细介绍了MetNet模型的基本架构、特点以及与其他气象预测模型的对比。然后,通过实战案例展示了MetNet模型在极端降雨天气预测中的应用,包括数据准备、模型搭建与训练、模型评估与预测。最后,文章总结了MetNet模型的优势与挑战,并展望了深度学习在气象领域
- 深度解析:Python与TensorFlow在日平均气温预测中的应用——LSTM神经网络实战
AI_DL_CODE
python神经网络tensorflowLSTM气温预测RNN
文章目录1.引言1.1研究背景与意义1.2研究目标与问题定义2.概念解析2.1Python语言简介2.2TensorFlow框架概述2.3LSTM神经网络原理3.原理详解3.1时间序列分析基础3.1.1时间序列的组成3.1.2时间序列分析方法3.2LSTM在时间序列分析中的应用3.2.1LSTM的优势3.2.2LSTM的结构3.3日平均气温预测的数学模型3.3.1ARIMA模型3.3.2LSTM模
- 国自然青年项目|基于多模态影像组学的乳腺癌分子分型预测研究|基金申请·25-01-20
罗小罗同学
基金申请医学人工智能人工智能国自然
小罗碎碎念今天和大家分享一份国自然青年项目,项目执行期为2021-2023年,直接费用为24万。项目聚焦乳腺癌分子分型预测,综合运用多模态组学数据、影像组学技术和深度学习技术。研究内容包括跨模态医学图像分割、多模态特征提取与融合、模型设计与系统研发。通过提出一系列创新算法,如基于类别中心原型对齐器的图像分割算法、基于自注意力机制与生成对抗网络的聚类算法等,实现了对乳腺癌分子分型的高精度预测,并开发
- Spring的注解积累
yijiesuifeng
spring注解
用注解来向Spring容器注册Bean。
需要在applicationContext.xml中注册:
<context:component-scan base-package=”pagkage1[,pagkage2,…,pagkageN]”/>。
如:在base-package指明一个包
<context:component-sc
- 传感器
百合不是茶
android传感器
android传感器的作用主要就是来获取数据,根据得到的数据来触发某种事件
下面就以重力传感器为例;
1,在onCreate中获得传感器服务
private SensorManager sm;// 获得系统的服务
private Sensor sensor;// 创建传感器实例
@Override
protected void
- [光磁与探测]金吕玉衣的意义
comsci
这是一个古代人的秘密:现在告诉大家
信不信由你们:
穿上金律玉衣的人,如果处于灵魂出窍的状态,可以飞到宇宙中去看星星
这就是为什么古代
- 精简的反序打印某个数
沐刃青蛟
打印
以前看到一些让求反序打印某个数的程序。
比如:输入123,输出321。
记得以前是告诉你是几位数的,当时就抓耳挠腮,完全没有思路。
似乎最后是用到%和/方法解决的。
而今突然想到一个简短的方法,就可以实现任意位数的反序打印(但是如果是首位数或者尾位数为0时就没有打印出来了)
代码如下:
long num, num1=0;
- PHP:6种方法获取文件的扩展名
IT独行者
PHP扩展名
PHP:6种方法获取文件的扩展名
1、字符串查找和截取的方法
1
$extension
=
substr
(
strrchr
(
$file
,
'.'
), 1);
2、字符串查找和截取的方法二
1
$extension
=
substr
- 面试111
文强chu
面试
1事务隔离级别有那些 ,事务特性是什么(问到一次)
2 spring aop 如何管理事务的,如何实现的。动态代理如何实现,jdk怎么实现动态代理的,ioc是怎么实现的,spring是单例还是多例,有那些初始化bean的方式,各有什么区别(经常问)
3 struts默认提供了那些拦截器 (一次)
4 过滤器和拦截器的区别 (频率也挺高)
5 final,finally final
- XML的四种解析方式
小桔子
domjdomdom4jsax
在平时工作中,难免会遇到把 XML 作为数据存储格式。面对目前种类繁多的解决方案,哪个最适合我们呢?在这篇文章中,我对这四种主流方案做一个不完全评测,仅仅针对遍历 XML 这块来测试,因为遍历 XML 是工作中使用最多的(至少我认为)。 预 备 测试环境: AMD 毒龙1.4G OC 1.5G、256M DDR333、Windows2000 Server
- wordpress中常见的操作
aichenglong
中文注册wordpress移除菜单
1 wordpress中使用中文名注册解决办法
1)使用插件
2)修改wp源代码
进入到wp-include/formatting.php文件中找到
function sanitize_user( $username, $strict = false
- 小飞飞学管理-1
alafqq
管理
项目管理的下午题,其实就在提出问题(挑刺),分析问题,解决问题。
今天我随意看下10年上半年的第一题。主要就是项目经理的提拨和培养。
结合我自己经历写下心得
对于公司选拔和培养项目经理的制度有什么毛病呢?
1,公司考察,选拔项目经理,只关注技术能力,而很少或没有关注管理方面的经验,能力。
2,公司对项目经理缺乏必要的项目管理知识和技能方面的培训。
3,公司对项目经理的工作缺乏进行指
- IO输入输出部分探讨
百合不是茶
IO
//文件处理 在处理文件输入输出时要引入java.IO这个包;
/*
1,运用File类对文件目录和属性进行操作
2,理解流,理解输入输出流的概念
3,使用字节/符流对文件进行读/写操作
4,了解标准的I/O
5,了解对象序列化
*/
//1,运用File类对文件目录和属性进行操作
//在工程中线创建一个text.txt
- getElementById的用法
bijian1013
element
getElementById是通过Id来设置/返回HTML标签的属性及调用其事件与方法。用这个方法基本上可以控制页面所有标签,条件很简单,就是给每个标签分配一个ID号。
返回具有指定ID属性值的第一个对象的一个引用。
语法:
&n
- 励志经典语录
bijian1013
励志人生
经典语录1:
哈佛有一个著名的理论:人的差别在于业余时间,而一个人的命运决定于晚上8点到10点之间。每晚抽出2个小时的时间用来阅读、进修、思考或参加有意的演讲、讨论,你会发现,你的人生正在发生改变,坚持数年之后,成功会向你招手。不要每天抱着QQ/MSN/游戏/电影/肥皂剧……奋斗到12点都舍不得休息,看就看一些励志的影视或者文章,不要当作消遣;学会思考人生,学会感悟人生
- [MongoDB学习笔记三]MongoDB分片
bit1129
mongodb
MongoDB的副本集(Replica Set)一方面解决了数据的备份和数据的可靠性问题,另一方面也提升了数据的读写性能。MongoDB分片(Sharding)则解决了数据的扩容问题,MongoDB作为云计算时代的分布式数据库,大容量数据存储,高效并发的数据存取,自动容错等是MongoDB的关键指标。
本篇介绍MongoDB的切片(Sharding)
1.何时需要分片
&nbs
- 【Spark八十三】BlockManager在Spark中的使用场景
bit1129
manager
1. Broadcast变量的存储,在HttpBroadcast类中可以知道
2. RDD通过CacheManager存储RDD中的数据,CacheManager也是通过BlockManager进行存储的
3. ShuffleMapTask得到的结果数据,是通过FileShuffleBlockManager进行管理的,而FileShuffleBlockManager最终也是使用BlockMan
- yum方式部署zabbix
ronin47
yum方式部署zabbix
安装网络yum库#rpm -ivh http://repo.zabbix.com/zabbix/2.4/rhel/6/x86_64/zabbix-release-2.4-1.el6.noarch.rpm 通过yum装mysql和zabbix调用的插件还有agent代理#yum install zabbix-server-mysql zabbix-web-mysql mysql-
- Hibernate4和MySQL5.5自动创建表失败问题解决方法
byalias
J2EEHibernate4
今天初学Hibernate4,了解了使用Hibernate的过程。大体分为4个步骤:
①创建hibernate.cfg.xml文件
②创建持久化对象
③创建*.hbm.xml映射文件
④编写hibernate相应代码
在第四步中,进行了单元测试,测试预期结果是hibernate自动帮助在数据库中创建数据表,结果JUnit单元测试没有问题,在控制台打印了创建数据表的SQL语句,但在数据库中
- Netty源码学习-FrameDecoder
bylijinnan
javanetty
Netty 3.x的user guide里FrameDecoder的例子,有几个疑问:
1.文档说:FrameDecoder calls decode method with an internally maintained cumulative buffer whenever new data is received.
为什么每次有新数据到达时,都会调用decode方法?
2.Dec
- SQL行列转换方法
chicony
行列转换
create table tb(终端名称 varchar(10) , CEI分值 varchar(10) , 终端数量 int)
insert into tb values('三星' , '0-5' , 74)
insert into tb values('三星' , '10-15' , 83)
insert into tb values('苹果' , '0-5' , 93)
- 中文编码测试
ctrain
编码
循环打印转换编码
String[] codes = {
"iso-8859-1",
"utf-8",
"gbk",
"unicode"
};
for (int i = 0; i < codes.length; i++) {
for (int j
- hive 客户端查询报堆内存溢出解决方法
daizj
hive堆内存溢出
hive> select * from t_test where ds=20150323 limit 2;
OK
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
问题原因: hive堆内存默认为256M
这个问题的解决方法为:
修改/us
- 人有多大懒,才有多大闲 (评论『卓有成效的程序员』)
dcj3sjt126com
程序员
卓有成效的程序员给我的震撼很大,程序员作为特殊的群体,有的人可以这么懒, 懒到事情都交给机器去做 ,而有的人又可以那么勤奋,每天都孜孜不倦得做着重复单调的工作。
在看这本书之前,我属于勤奋的人,而看完这本书以后,我要努力变成懒惰的人。
不要在去庞大的开始菜单里面一项一项搜索自己的应用程序,也不要在自己的桌面上放置眼花缭乱的快捷图标
- Eclipse简单有用的配置
dcj3sjt126com
eclipse
1、显示行号 Window -- Prefences -- General -- Editors -- Text Editors -- show line numbers
2、代码提示字符 Window ->Perferences,并依次展开 Java -> Editor -> Content Assist,最下面一栏 auto-Activation
- 在tomcat上面安装solr4.8.0全过程
eksliang
Solrsolr4.0后的版本安装solr4.8.0安装
转载请出自出处:
http://eksliang.iteye.com/blog/2096478
首先solr是一个基于java的web的应用,所以安装solr之前必须先安装JDK和tomcat,我这里就先省略安装tomcat和jdk了
第一步:当然是下载去官网上下载最新的solr版本,下载地址
- Android APP通用型拒绝服务、漏洞分析报告
gg163
漏洞androidAPP分析
点评:记得曾经有段时间很多SRC平台被刷了大量APP本地拒绝服务漏洞,移动安全团队爱内测(ineice.com)发现了一个安卓客户端的通用型拒绝服务漏洞,来看看他们的详细分析吧。
0xr0ot和Xbalien交流所有可能导致应用拒绝服务的异常类型时,发现了一处通用的本地拒绝服务漏洞。该通用型本地拒绝服务可以造成大面积的app拒绝服务。
针对序列化对象而出现的拒绝服务主要
- HoverTree项目已经实现分层
hvt
编程.netWebC#ASP.ENT
HoverTree项目已经初步实现分层,源代码已经上传到 http://hovertree.codeplex.com请到SOURCE CODE查看。在本地用SQL Server 2008 数据库测试成功。数据库和表请参考:http://keleyi.com/a/bjae/ue6stb42.htmHoverTree是一个ASP.NET 开源项目,希望对你学习ASP.NET或者C#语言有帮助,如果你对
- Google Maps API v3: Remove Markers 移除标记
天梯梦
google maps api
Simply do the following:
I. Declare a global variable:
var markersArray = [];
II. Define a function:
function clearOverlays() {
for (var i = 0; i < markersArray.length; i++ )
- jQuery选择器总结
lq38366
jquery选择器
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
- 基础数据结构和算法六:Quick sort
sunwinner
AlgorithmQuicksort
Quick sort is probably used more widely than any other. It is popular because it is not difficult to implement, works well for a variety of different kinds of input data, and is substantially faster t
- 如何让Flash不遮挡HTML div元素的技巧_HTML/Xhtml_网页制作
刘星宇
htmlWeb
今天在写一个flash广告代码的时候,因为flash自带的链接,容易被当成弹出广告,所以做了一个div层放到flash上面,这样链接都是a触发的不会被拦截,但发现flash一直处于div层上面,原来flash需要加个参数才可以。
让flash置于DIV层之下的方法,让flash不挡住飘浮层或下拉菜单,让Flash不档住浮动对象或层的关键参数:wmode=opaque。
方法如下:
- Mybatis实用Mapper SQL汇总示例
wdmcygah
sqlmysqlmybatis实用
Mybatis作为一个非常好用的持久层框架,相关资料真的是少得可怜,所幸的是官方文档还算详细。本博文主要列举一些个人感觉比较常用的场景及相应的Mapper SQL写法,希望能够对大家有所帮助。
不少持久层框架对动态SQL的支持不足,在SQL需要动态拼接时非常苦恼,而Mybatis很好地解决了这个问题,算是框架的一大亮点。对于常见的场景,例如:批量插入/更新/删除,模糊查询,多条件查询,联表查询,