ORBSLAM2(二) 代码详解

一build.sh 

 

二build结构

├── build       生成的build文件
├── build_ros.sh 
├── build.sh      build的脚本,上文提到
├── CMakeLists.txt   
├── cmake_modules
├── Dependencies.md
├── Examples     实际入口文件都在此
├── include
├── KeyFrameTrajectory.txt
├── lib
├── src
├── Thirdparty
├── Vocabulary               词袋

三代码入口

 

1)入口

2)校准

3)回环

1. 入口  Mono_kitti.cc

一)main

1) 参数判断,略过不谈

2) LoadImages 根据路径和时间戳加载图片,填充两个vector:string类型filename double类型timestamp

3)ORB_SLAM2::System SLAM 创建SLAM对象(system.cc) ,二)部分详述

         这里new了三个thread: tracking ,mapping , loopclosing, 负责追踪,建图,闭环,三个非常重要的环节

        i) mpTracker =new Tracking(this, mpVocabulary, mpFrameDrawer, mpMapDrawer,  mpMap, mpKeyFrameDatabase, strSettingsFile, mSensor);

        ii)

        iii)

4)Main loop  循环读取数据

         i)从文件读取img cv::imread

         ii)将图片传给SLAM system         SLAM.TrackMonocular(im,tframe);

5)SLAM Shutdown

         这里关闭了三个thread

6)保存轨迹路线

    SLAM.SaveKeyFrameTrajectoryTUM("KeyFrameTrajectory.txt");    

 

 

二)ORB_SLAM2::System

1)new ORBVocabulary() 创建词袋,根据参数后缀决定是bin文件还是txt,前者会比较小一些,加载快速一些

2)new KeyFrameDatabase 创建关键帧数据库

3)new Map 创建地图

4)new FrameDrawer 

 new MapDrawer

 创建显示窗口,一个是每张图片的显示,一个是地图

    初始化view thread  mptViewer = new thread(&Viewer::Run, mpViewer);

5) 初始化Tracking ,Mapping,Loop closing

new Tracking 初始化Tracking对象

new LocalMapping 初始化LocalMapping

new thread            初始化LocalMapping thread

 

new LoopClosing 初始化LoopClosing

new thread           初始化LoopClosing thread

 

new Viewer

new thread

SetViewer

通过一下三段:

SetLocalMapper SetLoopClosing

SetTracker SetLoopCloser

SetTracker SetLocalMapper

使得Tracker LoopCloser LocalMapper三者互相可以访问

const bool bUseViewer = true

注:    System(const string &strVocFile, const string &strSettingsFile, const eSensor sensor, const bool bUseViewer = true, bool is_save_map_=false);倒数第二个参数如果为false,没有处理,需要修改:

bool System::GetShutdown()

    if(mpViewer)
    {
        return mpViewer->isFinished();
    }
    else
        return false;


mptViewer = new thread(&Viewer::Run, mpViewer);

 

三)Tracking  每一帧图像进行跟踪计算

  main函数里,主循环里调用  SLAM.TrackMonocular(im,tframe);作为Tracking的入口)

  这一部分主要工作是:

    (1)从图像中提取ORB特征

    (2)根据上一帧进行姿态估计,或者进行通过全局重定位初始化位姿

    (3)然后跟踪已经重建的局部地图,优化位姿

    (4)再根据一些规则确定新的关键帧

 

四)Mapping 地图构建

  这一部分主要工作是:

    (1)加入关键帧,更新图

    (2)验证最近加入的地图点,去除outlier

    (3)生成新的地图点

     (4)局部bundle 调整(去除outlier)

     (5)验证关键帧(去除重复帧)

 

void LocalMapping::Run()      //LocalMapping.cc
{

    mbFinished = false;

    while(1)
    {
        // Tracking will see that Local Mapping is busy
        SetAcceptKeyFrames(false);

        // Check if there are keyframes in the queue
        if(CheckNewKeyFrames())
        {
            // BoW conversion and insertion in Map
            ProcessNewKeyFrame();

            // Check recent MapPoints
            MapPointCulling();

            // Triangulate new MapPoints
            CreateNewMapPoints();

            if(!CheckNewKeyFrames())
            {
                // Find more matches in neighbor keyframes and fuse point duplications
                SearchInNeighbors();
            }

            mbAbortBA = false;

            if(!CheckNewKeyFrames() && !stopRequested())
            {
                // Local BA
                if(mpMap->KeyFramesInMap()>2)
                    Optimizer::LocalBundleAdjustment(mpCurrentKeyFrame,&mbAbortBA, mpMap);

                // Check redundant local Keyframes
                KeyFrameCulling();
            }

            mpLoopCloser->InsertKeyFrame(mpCurrentKeyFrame);
        }
        else if(Stop())
        {
            // Safe area to stop
            while(isStopped() && !CheckFinish())
            {
                std::this_thread::sleep_for(std::chrono::microseconds(3000));
            }
            if(CheckFinish())
                break;
        }

        ResetIfRequested();

        // Tracking will see that Local Mapping is busy
        SetAcceptKeyFrames(true);

        if(CheckFinish())
            break;

        std::this_thread::sleep_for(std::chrono::microseconds(3000));
    }

    SetFinish();
}LocalMapping::Run()      //LocalMapping.cc
{

    mbFinished = false;

    while(1)
    {
        // Tracking will see that Local Mapping is busy
        SetAcceptKeyFrames(false);

        // Check if there are keyframes in the queue
        if(CheckNewKeyFrames())
        {
            // BoW conversion and insertion in Map
            ProcessNewKeyFrame();

            // Check recent MapPoints
            MapPointCulling();

            // Triangulate new MapPoints
            CreateNewMapPoints();

            if(!CheckNewKeyFrames())
            {
                // Find more matches in neighbor keyframes and fuse point duplications
                SearchInNeighbors();
            }

            mbAbortBA = false;

            if(!CheckNewKeyFrames() && !stopRequested())
            {
                // Local BA
                if(mpMap->KeyFramesInMap()>2)
                    Optimizer::LocalBundleAdjustment(mpCurrentKeyFrame,&mbAbortBA, mpMap);

                // Check redundant local Keyframes
                KeyFrameCulling();
            }

            mpLoopCloser->InsertKeyFrame(mpCurrentKeyFrame);
        }
        else if(Stop())
        {
            // Safe area to stop
            while(isStopped() && !CheckFinish())
            {
                std::this_thread::sleep_for(std::chrono::microseconds(3000));
            }
            if(CheckFinish())
                break;
        }

        ResetIfRequested();

        // Tracking will see that Local Mapping is busy
        SetAcceptKeyFrames(true);

        if(CheckFinish())
            break;

        std::this_thread::sleep_for(std::chrono::microseconds(3000));
    }

    SetFinish();
}
 

 

 

五)LoopClosing

  闭环检测

  这一部分主要工作是:

      (1)选取相似帧

    (2)检测闭环,RANSAC计算内点数

    (3)融合三维点,更新图

     (4)图优化,传导变换矩阵,更新地图点

 

 

 

你可能感兴趣的:(ORBSLAM2(二) 代码详解)