Section I
正确区分不同的查找算法count,find,binary_search,lower_bound,upper_bound,equal_range
本文是对Effective STL第45条的一个总结,阐述了各种查找算法的异同以及使用他们的时机。
首先可供查找的算法大致有count,find,binary_search,lower_bound,upper_bound,equal_range。带有判别式的如count_if,find_if或者binary_search的派别式版本,其用法大致相同,不影响选择,所以不作考虑。
注意这些查找算法需要序列式容器,或者数组。关联容器有相应的同名成员函数except binary_search。
首先,选择查找算法时,区间是否排序是一个至关重要的因素。
可以按是否需要排序区间分为两组:
A. count,find
B. binary_search,lower_bound,upper_bound,equal_range
A组不需排序区间, B组需要排序区间。
当一个区间被排序,优先选择B组,因为他们提供对数时间的效率。而A则是线性时间。
另外A组B组所依赖的查找判断法则不同,A使用相等性法则(查找对象需要定义operator==), B使用等价性法则(查找对象需要定义operator<,必须在相等时返回false)。
A组的区别
count:计算对象区间中的数目。
find:返回第一个对象的位置。
查找成功的话,find会立即返回,count不会立即返回(直到查找完整个区间),此时find效率较高。
因此除非是要计算对象的数目,否则不考虑count。
B组的区别 {1,3,4,5,6}
binary_search:判断是否存在某个对象
lower_bound: 返回>=对象的第一个位置,lower_bound(2)=3, lower_bound(3)=3
目标对象存在即为目标对象的位置,不存在则为后一个位置.
upper_bound: 返回>对象的第一个位置, upper_bound(2)=3,upper_bound(3)=4
无论是否存在都为后一个位置.
equal_bound: 返回由lower_bound和upper_bound返回值构成的pair,也就是所有等价元素区间。
equal_bound有两个需要注意的地方:
1. 如果返回的两个迭代器相同,说明查找区间为空,没有这样的值
2. 返回迭代器间的距离与迭代器中对象数目是相等的,对于排序区间,他完成了count和find的双重任务
Section II binary search in STL
如果在C++ STL容器中包含了有序的序列,STL提供了四个函数进行搜索,他们是利用二分查找实现的(Binary search).
其中:
假定相同值的元素可能有多个
lower_bound 返回第一个符合条件的元素位置
upper_bound 返回最后一个符合条件的元素位置
equal_range 返回所有等于指定值的头/尾元素的位置,其实就是lower_bound和upper_bound
binary_search 返回是否有需要查找的元素。
Section II Effect STL #45
条款45:注意count、find、binary_search、lower_bound、upper_bound和equal_range的区别
你要寻找什么,而且你有一个容器或者你有一个由迭代器划分出来的区间——你要找的东西就在里面。你要怎么完成搜索呢?你箭袋中的箭有这些:count、count_if、find、find_if、binary_search、lower_bound、upper_bound和equal_range。面对着它们,你要怎么做出选择?
简单。你寻找的是能又快又简单的东西。越快越简单的越好。
暂时,我假设你有一对指定了搜索区间的迭代器。然后,我会考虑到你有的是一个容器而不是一个区间的情况。
要选择搜索策略,必须依赖于你的迭代器是否定义了一个有序区间。如果是,你就可以通过binary_search、lower_bound、upper_bound和equal_range来加速(通常是对数时间——参见条款34)搜索。如果迭代器并没有划分一个有序区间,你就只能用线性时间的算法count、count_if、find和find_if。在下文中,我会忽略掉count和find是否有_if的不同,就像我会忽略掉binary_search、lower_bound、upper_bound和equal_range是否带有判断式的不同。你是依赖默认的搜索谓词还是指定一个自己的,对选择搜索算法的考虑是一样的。
如果你有一个无序区间,你的选择是count或着find。它们分别可以回答略微不同的问题,所以值得仔细去区分它们。count回答的问题是:“是否存在这个值,如果有,那么存在几份拷贝?”而find回答的问题是:“是否存在,如果有,那么它在哪儿?”
假设你想知道的东西是,是否有一个特定的Widget值w在list中。如果用count,代码看起来像这样:
这里示范了一种惯用法:把count用来作为是否存在的检查。count返回零或者一个正数,所以我们把非零转化为true而把零转化为false。如果这样能使我们要做的更加显而易见:
if (count(lw.begin(), lw.end(), w) != 0) ...
而且有些程序员这样写,但是使用隐式转换则更常见,就像最初的例子。
和最初的代码比较,使用find略微更难懂些,因为你必须检查find的返回值和list的end迭代器是否相等:
if (find(lw.begin(), lw.end(), w) != lw.end()) {
... // 找到了
} else {
... // 没找到
}
如果是为了检查是否存在,count这个惯用法编码起来比较简单。但是,当搜索成功时,它的效率比较低,因为当找到匹配的值后find就停止了,而count必须继续搜索,直到区间的结尾以寻找其他匹配的值。对大多数程序员来说,find在效率上的优势足以证明略微增加复杂度是合适的。
通常,只知道区间内是否有某个值是不够的。取而代之的是,你想获得区间中的第一个等于该值的对象。比如,你可能想打印出这个对象,你可能想在它前面插入什么,或者你可能想要删除它(但当迭代时删除的引导参见条款9)。当你需要知道的不止是某个值是否存在,而且要知道哪个对象(或哪些对象)拥有该值,你就得用find:
list
if (i != lw.end()) {
... // 找到了,i指向第一个
} else {
... // 没有找到
}
对于有序区间,你有其他的选择,而且你应该明确的使用它们。count和find是线性时间的,但有序区间的搜索算法(binary_search、lower_bound、upper_bound和equal_range)是对数时间的。
从无序区间迁移到有序区间导致了另一个迁移:从使用相等来判断两个值是否相同到使用等价来判断。条款19由一个详细地讲述了相等和等价的区别,所以我在这里不会重复。取而代之的是,我会简单地说明count和find算法都用相等来搜索,而binary_search、lower_bound、upper_bound和equal_range则用等价。
要测试在有序区间中是否存在一个值,使用binary_search。不像标准C库中的(因此也是标准C++库中的)bsearch,binary_search只返回一个bool:这个值是否找到了。binary_search回答这个问题:“它在吗?”它的回答只能是是或者否。如果你需要比这样更多的信息,你需要一个不同的算法。
这里有一个binary_search应用于有序vector的例子(你可以从条款23中知道有序vector的优点):
如果你有一个有序区间而且你的问题是:“它在吗,如果是,那么在哪儿?”你就需要equal_range,但你可能想要用lower_bound。我会很快讨论equal_range,但首先,让我们看看怎么用lower_bound来在区间中定位某个值。
当你用lower_bound来寻找一个值的时候,它返回一个迭代器,这个迭代器指向这个值的第一个拷贝(如果找到的话)或者到可以插入这个值的位置(如果没找到)。因此lower_bound回答这个问题:“它在吗?如果是,第一个拷贝在哪里?如果不是,它将在哪里?”和find一样,你必须测试lower_bound的结果,来看看它是否指向你要寻找的值。但又不像find,你不能只是检测lower_bound的返回值是否等于end迭代器。取而代之的是,你必须检测lower_bound所标示出的对象是不是你需要的值。
很多程序员这么用lower_bound:
大部分情况下这是行得通的,但不是真的完全正确。再看一遍检测需要的值是否找到的代码:
if (i != vw.end() && *i == w) ...
这是一个相等的测试,但lower_bound搜索用的是等价。大部分情况下,等价测试和相等测试产生的结果相同,但就像条款19论证的,相等和等价的结果不同的情况并不难见到。在这种情况下,上面的代码就是错的。
要完全完成,你就必须检测lower_bound返回的迭代器指向的对象的值是否和你要寻找的值等价。你可以手动完成(条款19演示了你该怎么做,当它值得一做时条款24提供了一个例子),但可以更狡猾地完成,因为你必须确认使用了和lower_bound使用的相同的比较函数。一般而言,那可以是一个任意的函数(或函数对象)。如果你传递一个比较函数给lower_bound,你必须确认和你的手写的等价检测代码使用了相同的比较函数。这意味着如果你改变了你传递给lower_bound的比较函数,你也得对你的等价检测部分作出修改。保持比较函数同步不是火箭发射,但却是另一个要记住的东西,而且我想你已经有很多需要你记的东西了。
这儿有一个简单的方法:使用equal_range。equal_range返回一对迭代器,第一个等于lower_bound返回的迭代器,第二个等于upper_bound返回的(也就是,等价于要搜索值区间的末迭代器的下一个)。因此,equal_range,返回了一对划分出了和你要搜索的值等价的区间的迭代器。一个名字很好的算法,不是吗?(当然,也许叫equivalent_range会更好,但叫equal_range也非常好。)
对于equal_range的返回值,有两个重要的地方。第一,如果这两个迭代器相同,就意味着对象的区间是空的;这个只没有找到。这个结果是用equal_range来回答“它在吗?”这个问题的答案。你可以这么用:
这段代码只用等价,所以总是正确的。
第二个要注意的是equal_range返回的东西是两个迭代器,对它们作distance就等于区间中对象的数目,也就是,等价于要寻找的值的对象。结果,equal_range不光完成了搜索有序区间的任务,而且完成了计数。比如说,要在vw中找到等价于w的Widget,然后打印出来有多少这样的Widget存在,你可以这么做:
VWIterPair p = equal_range(vw.begin(), vw.end(), w);
cout << "There are " << distance(p.first, p.second)
<< " elements in vw equivalent to w.";
到目前为止,我们所讨论的都是假设我们要在一个区间内搜索一个值,但是有时候我们更感兴趣于在区间中寻找一个位置。比如,假设我们有一个Timestamp类和一个Timestamp的vector,它按照老的timestamp放在前面的方法排序:
class Timestamp { ... };
bool operator<(const Timestamp& lhs, // 返回在时间上lhs
const Timestamp& rhs); // 是否在rhs前面
vector
... // 排序,使老的时间
sort(vt.begin(), vt.end()); // 在新的前面
现在假设我们有一个特殊的timestamp——ageLimit,而且我们从vt中删除所有比ageLimit老的timestamp。在这种情况下,我们不需要在vt中搜索和ageLimit等价的Timestamp,因为可能不存在任何等价于这个精确值的元素。 取而代之的是,我们需要在vt中找到一个位置:第一个不比ageLimit更老的元素。这是再简单不过的了,因为lower_bound会给我们答案的:
Timestamp ageLimit;
...
vt.erase(vt.begin(), lower_bound(vt.begin(), // 从vt中排除所有
vt.end(), // 排在ageLimit的值
ageLimit)); // 前面的对象
如果我们的需求稍微改变了一点,我们要排除所有至少和ageLimit一样老的timestamp,也就是我们需要找到第一个比ageLimit年轻的timestamp的位置。这是一个为upper_bound特制的任务:
vt.erase(vt.begin(), upper_bound(vt.begin(), // 从vt中除去所有
vt.end(), // 排在ageLimit的值前面
ageLimit)); // 或者等价的对象
如果你要把东西插入一个有序区间,而且对象的插入位置是在有序的等价关系下它应该在的地方时,upper_bound也很有用。比如,你可能有一个有序的Person对象的list,对象按照name排序:
class Person {
public:
...
const string& name() const;
...
};
struct PersonNameLess:
public binary_function
bool operator()(const Person& lhs, const Person& rhs) const
{
return lhs.name() < rhs.name();
}
};
list
...
lp.sort(PersonNameLess()); // 使用PersonNameLess排序lp
要保持list仍然是我们希望的顺序(按照name,插入后等价的名字仍然按顺序排列),我们可以用upper_bound来指定插入位置:
Person newPerson;
...
lp.insert(upper_bound(lp.begin(), // 在lp中排在newPerson
lp.end(), // 之前或者等价
newPerson, // 的最后一个
PersonNameLess()), // 对象后面
newPerson); // 插入newPerson
这工作的很好而且很方便,但很重要的是不要被误导——错误地认为upper_bound的这种用法让我们魔术般地在一个list里在对数时间内找到了插入位置。我们并没有——条款34解释了因为我们用了list,查找花费线性时间,但是它只用了对数次的比较。
一直到这里,我都只考虑我们有一对定义了搜索区间的迭代器的情况。通常我们有一个容器,而不是一个区间。在这种情况下,我们必须区别序列和关联容器。对于标准的序列容器(vector、string、deque和list),你应该遵循我在本条款提出的建议,使用容器的begin和end迭代器来划分出区间。
这种情况对标准关联容器(set、multiset、map和multimap)来说是不同的,因为它们提供了搜索的成员函数,它们往往是比用STL算法更好的选择。条款44详细说明了为什么它们是更好的选择,简要地说,是因为它们更快行为更自然。幸运的是,成员函数通常和相应的算法有同样的名字,所以前面的讨论推荐你使用的算法count、find、equal_range、lower_bound或upper_bound,在搜索关联容器时你都可以简单的用同名的成员函数来代替。
调用binary_search的策略不同,因为这个算法没有提供对应的成员函数。要测试在set或map中是否存在某个值,使用count的惯用方法来对成员进行检测:
set
...
Widget w; // w仍然是保存要搜索的值
...
if (s.count(w)) {
... // 存在和w等价的值
} else {
... // 不存在这样的值
}
要测试某个值在multiset或multimap中是否存在,find往往比count好,因为一旦找到等于期望值的单个对象,find就可以停下了,而count,在最遭的情况下,必须检测容器里的每一个对象。(对于set和map,这不是问题,因为set不允许重复的值,而map不允许重复的键。)
但是,count给关联容器计数是可靠的。特别,它比调用equal_range然后应用distance到结果迭代器更好。首先,它更清晰:count 意味着“计数”。第二,它更简单;不用建立一对迭代器然后把它的组成(译注:就是first和second)传给distance。第三,它可能更快一点。
要给出所有我们在本条款中所考虑到的,我们的从哪儿着手?下面的表格道出了一切。
你想知道的 | 在无序区间 | 在有序区间 | 在set或map上 | 在multiset或multimap上 |
期望值是否存在? | find | binary_search | count | find |
期望值是否存在?如果有,第一个等于这个值的对象在哪里? | find | equal_range | find | find或lower_bound(参见下面) |
第一个不在期望值之前的对象在哪里? | find_if | lower_bound | lower_bound | lower_bound |
第一个在期望值之后的对象在哪里? | find_if | upper_bound | upper_bound | upper_bound |
有多少对象等于期望值? | count | equal_range,然后distance | count | count |
等于期望值的所有对象在哪里? | find(迭代) | equal_range | equal_range | equal_range |
上表总结了要怎么操作有序区间,equal_range的出现频率可能令人吃惊。当搜索时,这个频率因为等价检测的重要性而上升了。对于lower_bound和upper_bound,它很容易在相等检测中退却,但对于equal_range,只检测等价是很自然的。在第二行有序区间,equal_range打败了find还因为一个理由:equal_range花费对数时间,而find花费线性时间。
对于multiset和multimap,当你在搜索第一个等于特定值的对象的那一行,这个表列出了find和lower_bound两个算法作为候选。 已对于这个任务find是通常的选择,而且你可能已经注意到在set和map那一列里,这项只有find。但是对于multi容器,如果不只有一个值存在,find并不保证能识别出容器里的等于给定值的第一个元素;它只识别这些元素中的一个。如果你真的需要找到等于给定值的第一个元素,你应该使用lower_bound,而且你必须手动的对第二部分做等价检测,条款19的内容可以帮你确认你已经找到了你要找的值。(你可以用equal_range来避免作手动等价检测,但是调用equal_range的花费比调用lower_bound多得多。)
在count、find、binary_search、lower_bound、upper_bound和equal_range中做出选择很简单。当你调用时,选择算法还是成员函数可以给你需要的行为和性能,而且是最少的工作。按照这个建议做(或参考那个表格),你就不会再有困惑。
二分法检索(binary search)又称折半检索,二分法检索的基本思想是设字典中的元素从小到大有序地存放在数组(array)中, 首先将给定值key与字典中间位置上元素的关键码(key)比较,如果相等,则检索成功; 否则,若key小,则在字典前半部分中继续进行二分法检索; 若key大,则在字典后半部分中继续进行二分法检索。 这样,经过一次比较就缩小一半的检索区间,如此进行下去,直到检索成功或检索失败。 二分法检索是一种效率较高的检索方法,要求字典在顺序表中按关键码排序。