简介:
掌门1对1精耕在线教育领域,近几年业务得到了快速发展,但同时也遭遇了“成长的烦恼”。随着微服务数量不断增加,流量进一步暴增,硬件资源有点不堪重负,那么,如何实现更好的限流熔断降级等流量防护措施,这个课题就摆在了掌门人的面前。由于 Spring Cloud
体系已经演进到第二代,第一代的 Hystrix
限流熔断降级组件已经不大适合现在的业务逻辑和规模,同时它目前被 Spring Cloud
官方置于维护模式,将不再向前发展。
如何选择一个更好的限流熔断降级组件?经过对 Alibaba Sentinel
、Resilience4j
、Hystrix
等开源组件做了深入的调研和比较,最终选定 Alibaba Sentinel
做微服务体系 Solar
中的限流熔断降级必选组件。
阿里巴巴中间件部门开发的新一代以流量为切入点,从流量控制、熔断降级、系统负载保护等多个维度保护服务的稳定性的分布式系统的流量防卫兵。它承接了阿里巴巴近10年的双十一大促流量的核心场景,例如秒杀(即突发流量控制在系统容量可以承受的范围)、消息削峰填谷、集群流量控制、实时熔断下游不可用应用等。
它具有非常丰富的开源生态:
它和 Hystrix
相比,有如下差异:
摘自官网 Sentinel Roadmap
关于 Sentinel
如何使用,它的技术实现原理怎样等,官方文档或者民间博客、公众号文章等可以提供非常详尽且有价值的材料,这些不在本文的讨论范围内,就不一一赘述。笔者尝试结合掌门1对1现有的技术栈以及中间件一体化的战略,并着眼于强大的 Spring Cloud Alibaba
技术生态圈展开阐释。
Sentinel
官方在 sentinel-datasource-apollo
模块中已经对 Apollo
做了一些扩展,主要实现了 Sentinel
规则的读取和订阅逻辑。这些并不够,我们需要对 Apollo
进行更深层次的集成。
摘自官网 在生产环境中使用 Sentinel
定制 EnvironmentPostProcessor
类,实现如下:
Sentinel Dashboard
的项目名称从 Apollo
AppId
的维度进行展示env
值读取相应的配置文件,并访问对应环境的 Sentinel Dashboard
域名Sentinel Dashboard
在生产环境部署若干台 ECS
实例,阿里云 SLB
做负载均衡,实现对集群的水平扩展public class SentinelClientEnvironmentPostProcessor implements EnvironmentPostProcessor {
private final ResourceLoader resourceLoader = new DefaultResourceLoader();
private static final String DEFAULT_CLASSPATH_LOCATION = "classpath:/META-INF/app.properties";
private static final String DEFAULT_LOCATION = "/META-INF/app.properties";
private static final String DEFAULT_LOG_LOCATION = "/opt/logs/";
@Override
public void postProcessEnvironment(ConfigurableEnvironment environment, SpringApplication application) {
try {
Resource appResource = resourceLoader.getResource(DEFAULT_CLASSPATH_LOCATION);
if (!appResource.exists()) {
appResource = resourceLoader.getResource(DEFAULT_LOCATION);
}
Properties appProperties = new Properties();
appProperties.load(new InputStreamReader(appResource.getInputStream()));
String appId = appProperties.getProperty("app.id");
System.setProperty("project.name", appId);
System.setProperty("csp.sentinel.log.dir", DEFAULT_LOG_LOCATION + appId);
Properties properties = new Properties();
String path = isOSWindows() ? "C:/opt/settings/server.properties" : "/opt/settings/server.properties";
File file = new File(path);
if (file.exists() && file.canRead()) {
FileInputStream fis = new FileInputStream(file);
if (fis != null) {
try {
properties.load(new InputStreamReader(fis, Charset.defaultCharset()));
} finally {
fis.close();
}
}
}
String idc = properties.getProperty("idc");
String location;
String env = System.getProperty("env");
if (StringUtils.isEmpty(idc)) {
if (!isBlank(env)) {
env = env.trim().toLowerCase();
} else {
env = System.getenv("ENV");
if (!isBlank(env)) {
env = env.trim().toLowerCase();
} else {
env = properties.getProperty("env");
if (!isBlank(env)) {
env = env.trim();
} else {
env = Env.FAT.getEnv();
}
}
}
location = "classpath:/META-INF/sentinel-" + env + ".properties";
} else {
location = "classpath:/META-INF/sentinel-" + idc + ".properties";
}
Resource serverResource = resourceLoader.getResource(location);
properties.load(new InputStreamReader(serverResource.getInputStream()));
for (String key : properties.stringPropertyNames()) {
System.setProperty(key, properties.getProperty(key));
}
System.setProperty(CommonConstant.SENTINEL_VERSION_NAME, CommonConstant.SENTINEL_VERSION_VALUE);
} catch (Exception e) {
LOG.error(e.getMessage());
}
}
private boolean isBlank(String str) {
return Strings.nullToEmpty(str).trim().isEmpty();
}
private boolean isOSWindows() {
String osName = System.getProperty("os.name");
return !isBlank(osName) && osName.startsWith("Windows");
}
}
把 SentinelClientEnvironmentPostProcessor
类放置 \resources\META-INF\spring.factories
文件中,内容为
org.springframework.boot.env.EnvironmentPostProcessor=\
com.zhangmen.solar.component.sentinel.common.context.SentinelClientEnvironmentPostProcessor
在 \resources\META-INF
目录下,定制环境配置文件,文件名格式为 sentinel-{环境号}.properties
。下文以 dev
环境和 flow
流控配置(其它规则配置,请自行参考 Spring Cloud Alibaba Sentinel
的相关资料)为样例。
sentinel-dev.properties
spring.cloud.sentinel.transport.dashboard=127.0.0.1:8080
spring.cloud.sentinel.datasource.ds.apollo.namespaceName=application
spring.cloud.sentinel.datasource.ds.apollo.flowRulesKey=sentinel.flowRules
spring.cloud.sentinel.datasource.ds.apollo.ruleType=flow
...
原生的 Sentinel Dashboard
在创建完规则后,规则内容保存在服务的内存中,当服务重启后所有的规则内容都会消失。因此,在生产部署时需要考虑配置持久化,并且使用 Apollo
动态规则的感知能力。
① 向外暴露 Sentinel 规则的 Restful 接口
@RestController
@RequestMapping(value = "/v2/flow")
public class FlowControllerV2 {
@Autowired
@Qualifier("apolloFlowRuleProvider")
private DynamicRuleProvider> ruleProvider;
@Autowired
@Qualifier("apolloFlowRulePublisher")
private DynamicRulePublisher> rulePublisher;
....
}
② 实现 Sentinel Apollo 规则提供
@Component("apolloFlowRuleProvider")
public class ApolloFlowRuleProvider extends BaseApolloRuleProvider {
@Override
public List getRules(String appName) throws Exception {
List flowRuleEntityList = super.getRules(appName);
if (!CollectionUtils.isEmpty(flowRuleEntityList)) {
List flowRuleEntities = JSONArray.parseArray(flowRuleEntityList.toString(), FlowRuleEntity.class);
long id = 1;
for (FlowRuleEntity entity : flowRuleEntities) {
entity.setId(id++);
entity.getClusterConfig().setFlowId(entity.getId());
}
return flowRuleEntities;
} else {
return null;
}
}
@Override
protected String getDataId() {
return ApolloConfigUtil.getFlowDataId();
}
}
③ 实现 Sentinel Apollo 规则订阅
@Component("apolloFlowRulePublisher")
public class ApolloFlowRulePublisher extends BaseApolloRulePublisher> {
@Override
public void publish(String app, String operator, List rules) throws Exception {
if (!CollectionUtils.isEmpty(rules)) {
for (int i = 0; i < rules.size(); i++) {
rules.get(i).setId((long) (i + 1));
rules.get(i).setApp(null);
rules.get(i).setGmtModified(null);
rules.get(i).setGmtCreate(null);
rules.get(i).setIp(null);
rules.get(i).setPort(null);
rules.get(i).getClusterConfig().setFlowId((long) (i + 1));
}
} else {
rules = null;
}
super.publish(app, operator, rules);
}
@Override
protected String getDataId() {
return ApolloConfigUtil.getFlowDataId();
}
}
上述代码实现了对 Apollo
配置读写操作。熟悉 Apollo
的同学应该知道,这些操作需要基于 Apollo OpenApi
来操作;动态感知能力的逻辑已经由 sentinel-datasource-apollo
模块实现。
由于掌门1对1微服务技术栈落地的比较早,鉴于历史的局限性(当时没有更先进的技术可供选择),除了 Hystrix 比较古老以外,另一个技术栈的痛点是全链路监控中间件的改造也提上议事日程,CAT 作为开源界老牌作品,为公司底层全链路监控提供强有力的保障,但随着技术的演进,它逐渐已经不适合公司的未来发展方向,经过对比,最终选择 Skywalking 将作为它的替代者(关于 Skywalking 的技术选型,将在后面掌门1对1微服务体系 Solar 的公众号系列文章中会一一阐述)。
业务系统要求对限流熔断降级实现全链路实时埋点,并希望在 Skywalking
界面上提供限流熔断降级埋点的多维度统计。由于 Skywalking
实现了 OpenTracing
标准化协议,那么以 OpenTracing
为桥梁,通过 Solar
SDK 输出 Sentinel
埋点到 Skywalking
Server 不失为一个好的技术选择。下面简单扼要介绍一下基于 Sentinel InitFunc
的 SPI
机制实现埋点输出:
Sentinel
将 ProcessorSlot
作为 SPI
接口进行扩展(1.7.2 版本以前 SlotChainBuilder
作为 SPI
),使得 Slot Chain
具备了扩展的能力。您可以自行加入自定义的 slot 并编排 slot 间的顺序,从而可以给 Sentinel
添加自定义的功能。
摘自官网 Sentinel 工作主流程
Sentinel
的 ProcessorSlotEntryCallback
提供 onPass
和 onBlocked
两个方法,毕竟限流熔断降级并不是常规的功能,不会发生在大流量上面,所以 onPass
上我们不做任何处理,否则正常的调用去实现拦截,将为产生大量的埋点数据,会让 Skywalking
Server 承受很大的性能压力,所以 onBlocked
将是我们关注的重点,它除了输出 Sentinel
本身的上下文参数之外,也会输出微服务 Solar
指标参数,主要包括:
Span
名称,这里为 SENTINEL
,在 Skywalking
全链路监控界面中,用户可以非常容易的找到这个埋点组
名,指服务的逻辑分组
Sentinel
埋点可以支持在服务和网关上的输出APPID
,它为 Apollo
组件的范畴概念spring.application.name
的配置值IP
地址和 Port
端口接下去是 Sentinel
层面的参数,请自行参考 Sentinel
官方文档和源码,了解其含义,这里不做具体讲解。
public abstract class SentinelTracerProcessorSlotEntryCallback implements ProcessorSlotEntryCallback {
@Override
public void onPass(Context context, ResourceWrapper resourceWrapper, DefaultNode param, int count, Object... args) throws Exception {
}
@Override
public void onBlocked(BlockException e, Context context, ResourceWrapper resourceWrapper, DefaultNode param, int count, Object... args) {
S span = buildSpan();
PluginAdapter pluginAdapter = PluginContextAware.getStaticApplicationContext().getBean(PluginAdapter.class);
outputSpan(span, DiscoveryConstant.SPAN_TAG_PLUGIN_NAME, context.getName());
outputSpan(span, DiscoveryConstant.N_D_SERVICE_GROUP, pluginAdapter.getGroup());
outputSpan(span, DiscoveryConstant.N_D_SERVICE_TYPE, pluginAdapter.getServiceType());
String serviceAppId = pluginAdapter.getServiceAppId();
if (StringUtils.isNotEmpty(serviceAppId)) {
outputSpan(span, DiscoveryConstant.N_D_SERVICE_APP_ID, serviceAppId);
}
outputSpan(span, DiscoveryConstant.N_D_SERVICE_ID, pluginAdapter.getServiceId());
outputSpan(span, DiscoveryConstant.N_D_SERVICE_ADDRESS, pluginAdapter.getHost() + ":" + pluginAdapter.getPort());
outputSpan(span, DiscoveryConstant.N_D_SERVICE_VERSION, pluginAdapter.getVersion());
outputSpan(span, DiscoveryConstant.N_D_SERVICE_REGION, pluginAdapter.getRegion());
outputSpan(span, DiscoveryConstant.N_D_SERVICE_ENVIRONMENT, pluginAdapter.getEnvironment());
outputSpan(span, SentinelStrategyConstant.ORIGIN, context.getOrigin());
outputSpan(span, SentinelStrategyConstant.ASYNC, String.valueOf(context.isAsync()));
outputSpan(span, SentinelStrategyConstant.RESOURCE_NAME, resourceWrapper.getName());
outputSpan(span, SentinelStrategyConstant.RESOURCE_SHOW_NAME, resourceWrapper.getShowName());
outputSpan(span, SentinelStrategyConstant.RESOURCE_TYPE, String.valueOf(resourceWrapper.getResourceType()));
outputSpan(span, SentinelStrategyConstant.ENTRY_TYPE, resourceWrapper.getEntryType().toString());
outputSpan(span, SentinelStrategyConstant.RULE_LIMIT_APP, e.getRuleLimitApp());
if (tracerSentinelRuleOutputEnabled) {
outputSpan(span, SentinelStrategyConstant.RULE, e.getRule().toString());
}
outputSpan(span, SentinelStrategyConstant.CAUSE, e.getClass().getName());
outputSpan(span, SentinelStrategyConstant.BLOCK_EXCEPTION, e.getMessage());
outputSpan(span, SentinelStrategyConstant.COUNT, String.valueOf(count));
if (tracerSentinelArgsOutputEnabled) {
outputSpan(span, SentinelStrategyConstant.ARGS, JSON.toJSONString(args));
}
finishSpan(span);
}
protected abstract S buildSpan();
protected abstract void outputSpan(S span, String key, String value);
protected abstract void finishSpan(S span);
}
实现 SentinelTracerProcessorSlotEntryCallback
的三个核心方法:
buildSpan
- 创建 Skywalking
的埋点 Span
对象outputSpan
- 输出相关埋点数据的键值对到 Skywalking
的埋点 Span
对象中finishSpan
- 提交 Skywalking
的埋点 Span
对象到 Skywalking
Serverpublic class SentinelSkywalkingTracerProcessorSlotEntryCallback extends SentinelTracerProcessorSlotEntryCallback {
private Tracer tracer = new SkywalkingTracer();
@Override
protected Span buildSpan() {
return tracer.buildSpan(SentinelStrategyConstant.SPAN_NAME).startManual();
}
@Override
protected void outputSpan(Span span, String key, String value) {
span.setTag(key, value);
}
@Override
protected void finishSpan(Span span) {
span.finish();
}
}
实现 SPI
的扩展切入类
public class SentinelSkywalkingTracerInitFunc implements InitFunc {
@Override
public void init() throws Exception {
StatisticSlotCallbackRegistry.addEntryCallback(SentinelSkywalkingTracerProcessorSlotEntryCallback.class.getName(), new SentinelSkywalkingTracerProcessorSlotEntryCallback());
}
}
把 SPI
的扩展切入类放置 \resources\META-INF\services\com.alibaba.csp.sentinel.init.InitFunc
文件中,内容为
com.nepxion.discovery.plugin.strategy.sentinel.skywalking.monitor.SentinelSkywalkingTracerInitFunc
摘自 Nepxion Discovery 开源社区
对于 Sentinel 跟 Opentracing, Skywalking, Jaeger 的集成可参考 https://github.com/Nepxion/Discovery 中的 discovery-plugin-strategy-sentinel-starter-opentracing, discovery-plugin-strategy-sentinel-starter-skywalking 等模块。
最终在 Skywalking
全链路界面上输出如下:
全链路调用链中,我们可以看到 solar-service-a
服务的链路上输出了 SENTINEL
埋点,表示 solar-service-a
上发生了 Sentinel
限流熔断降级事件之一。
点击 SENTINEL
埋点,在呼出的内容看板上,我们可以看到 solar-service-a
服务发生了限流事件,上面显示限流的规则和异常信息以及微服务 Solar
指标等一系列参数。
我们可以点击界面上边的【熔断查询】进行 Sentinel
相关数据的分析和统计
① Sentinel MetricFetcher 拉取数据
实现 Dashboard
服务端拉取 Sentinel
客户端(即 Solar
微服务)的监控数据
@Component
public class MetricFetcher {
@Autowired
@Qualifier("influxDBMetricRepository")
private MetricsRepository metricStore;
...
}
② InfluxDB 实例初始化
@Configuration
public class InfluxDBAutoConfiguration {
@Value("${spring.influx.url}")
private String influxDBUrl;
@Value("${spring.influx.user}")
private String userName;
@Value("${spring.influx.password}")
private String password;
@Value("${spring.influx.database}")
private String database;
@Bean
public InfluxDB influxDB() {
InfluxDB influxDB = null;
try {
influxDB = InfluxDBFactory.connect(influxDBUrl, userName, password);
influxDB.setDatabase(database).enableBatch(100, 1000, TimeUnit.MILLISECONDS);
influxDB.setLogLevel(InfluxDB.LogLevel.NONE);
} catch (Exception e) {
LOG.error(e.getMessage());
}
return influxDB;
}
}
③ Sentinel 数据写入到 InfluxDB
@Component("influxDBMetricRepository")
public class InfluxDBMetricRepository implements MetricsRepository {
@Autowired
private InfluxDB influxDB;
@Override
public void save(MetricEntity metric) {
try {
Point point = createPoint(metric);
influxDB.write(point);
} catch (Exception e) {
LOG.error(e.getMessage());
}
}
@Override
public void saveAll(Iterable metrics) {
if (metrics == null) {
return;
}
try {
BatchPoints batchPoints = BatchPoints.builder().build();
metrics.forEach(metric -> {
Point point = createPoint(metric);
batchPoints.point(point);
});
influxDB.write(batchPoints);
} catch (Exception e) {
LOG.error(e.getMessage());
}
}
}
掌门1对1已经实现通过灰度蓝绿发布方式,实现对流量的精确制导和调拨,但为了进一步实施更安全的流量保障,引入了基础指标和灰度蓝绿发布指标的熔断,同时也支持业务自定义指标和组合指标的熔断。
通过对 Sentinel
Limit-App
机制的扩展并定制授权规则,实现微服务 Solar
的熔断扩展。对于授权规则中涉及到的参数,简要做如下说明:
resource
为 @SentinelResource
注解的 value
,也可以是调用的 URL
路径值limitApp
如果有多个,可以通过 ,
分隔。特别注意,下文为了描述简单,只以单个为例strategy
为 0
表示白名单,符合条件就放行流量; strategy
为 1
表示黑名单,符合条件就限制流量。特别注意,下文为了描述简单,只以白名单为例通过 Http Header
自动携带下游服务的基础指标进行全链路传递的方式,对下游调用实施基础指标的熔断。支持如下指标:
① 服务名
当 A 服务发送请求到 B 服务,所携带的 A 服务名不满足条件,该请求就会被 B 服务熔断。
spring.application.strategy.service.sentinel.request.origin.key=n-d-service-id
limitApp
为 A 服务名[
{
"resource": "sentinel-resource",
"limitApp": "a-service-id",
"strategy": 0
}
]
② 服务的 APPID
当 A 服务发送请求到 B 服务,所携带的 A 服务的 APPID
不满足条件,该请求就会被 B 服务熔断。
spring.application.strategy.service.sentinel.request.origin.key=n-d-service-app-id
limitApp
为 A 服务的 APPID
[
{
"resource": "sentinel-resource",
"limitApp": "a-service-app-id",
"strategy": 0
}
]
③ 服务实例所在的 IP
地址和 Port
端口
当 A 服务发送请求到 B 服务,所携带的 A 服务的 IP
地址和 Port
端口不满足条件,该请求就会被 B 服务熔断。
spring.application.strategy.service.sentinel.request.origin.key=n-d-service-address
limitApp
为 A 服务实例所在的 IP
地址和 Port
端口[
{
"resource": "sentinel-resource",
"limitApp": "a-ip:a-port",
"strategy": 0
}
]
通过 Http Header
自动携带下游服务的灰度蓝绿发布指标进行全链路传递的方式,对下游调用实施灰度蓝绿发布指标的熔断。支持如下指标:
① 服务所在的组
名
当 A 服务发送请求到 B 服务,所携带的 A 服务的组
名和 B 服务的组
名不一致,该请求就会被 B 服务熔断。
spring.application.strategy.service.sentinel.request.origin.key=n-d-service-group
limitApp
为 B 服务的组名[
{
"resource": "sentinel-resource",
"limitApp": "b-group",
"strategy": 0
}
]
② 服务版本号
当 A 服务发送请求到 B 服务,所携带的 A 服务的版本号和 B 服务的版本号不一致,该请求就会被 B 服务熔断。
spring.application.strategy.service.sentinel.request.origin.key=n-d-service-version
limitApp
为 B 服务的版本号[
{
"resource": "sentinel-resource",
"limitApp": "b-version",
"strategy": 0
}
]
③ 服务所在的区域
当 A 服务发送请求到 B 服务,所携带的 A 服务的区域值和 B 服务的区域值不一致,该请求就会被 B 服务熔断。
spring.application.strategy.service.sentinel.request.origin.key=n-d-service-region
limitApp
为 B 服务的区域值[
{
"resource": "sentinel-resource",
"limitApp": "b-region",
"strategy": 0
}
]
④ 服务所在的子环境
当 A 服务发送请求到 B 服务,所携带的 A 服务的子环境值和 B 服务的子环境值不一致,该请求就会被 B 服务熔断。
spring.application.strategy.service.sentinel.request.origin.key=n-d-service-env
limitApp
为 B 服务的子环境值[
{
"resource": "sentinel-resource",
"limitApp": "b-env",
"strategy": 0
}
]
通过 Http Header
携带下游服务的业务自定义指标进行全链路传递的方式,对下游调用实施自定义指标的熔断。
当 A 服务发送请求到 B 服务,所携带的 A 的自定义指标不满足条件,该请求就会被 B 服务熔断。例如: A 服务把 userName
通过 Http Header
传递给 B 服务,而 B 服务只接受 userName
为 zhangsan
的请求,那么我们可以通过如下方式来解决:
Sentinel
Origin
值的解析public class MyServiceSentinelRequestOriginAdapter extends AbstractServiceSentinelRequestOriginAdapter {
@Override
public String parseOrigin(HttpServletRequest request) {
return request.getHeader("userName");
}
}
@Bean
方式进行适配类创建@Bean
public ServiceSentinelRequestOriginAdapter ServiceSentinelRequestOriginAdapter() {
return new MyServiceSentinelRequestOriginAdapter();
}
limitApp
为 zhangsan
[
{
"resource": "sentinel-resource",
"limitApp": "zhangsan",
"strategy": 0
}
]
假如该方式仍未能满足业务场景,业务系统希望根据 userName
获取 userType
,根据用户类型做统一熔断,例如,用户类型为 AUTH_USER
的请求才能放行,其它都熔断,那么我们可以把上面的例子修改如下:
public class MyServiceSentinelRequestOriginAdapter extends AbstractServiceSentinelRequestOriginAdapter {
@Override
public String parseOrigin(HttpServletRequest request) {
String userName = request.getHeader("userName");
String userType = getUserTypeByName(userName);
return userType;
}
}
[
{
"resource": "sentinel-resource",
"limitApp": "AUTH_USER",
"strategy": 0
}
]
通过 Http Header
携带下游服务的业务自定义指标、基础指标或者灰度蓝绿发布指标进行全链路传递的方式,对下游调用实施组合指标的熔断,例如,根据传入的微服务版本号 + 用户名,组合在一起进行熔断。下面示例表示为下游服务版本为 1.0
且 userName
为 zhangsan
,同时满足这两个条件下,所有服务的请求允许被放行,否则被熔断。
public class MyServiceSentinelRequestOriginAdapter extends AbstractServiceSentinelRequestOriginAdapter {
@Override
public String parseOrigin(HttpServletRequest request) {
String version = request.getHeader(DiscoveryConstant.N_D_SERVICE_VERSION);
String userName = request.getHeader("userName");
return version + "&" + userName;
}
}
[
{
"resource": "sentinel-resource",
"limitApp": "1.0&zhangsan",
"strategy": 0
}
]
阐述网关流控实践的时候,我们使用精确匹配的方式对某个服务的请求做限流控制为例;对网关代理的 solar-service-a
服务的接口 /inspector/inspect
做限流控制为例。
API
管理页面里添加 solar-service-a
, 并精确匹配串 /inspector/inspect
在流控规则界面里配置相关的规则
最终在 Skywalking
全链路界面上输出如下(跟 Solar
服务侧 Sentinel
埋点相似,不一一阐述了):
我们采用 Sentinel
官方提供的嵌入式 Token Server
解决方案,即服务集群中选择一个节点做为 Token Server
,同时该节点也作为 Token Client
响应外部的请求的服务器。具体实现方式通过 Sentinel
实现预留的 SPI
InitFunc
接口,可以参考官方 sentinel-demo
模块下面的 sentinel-demo-cluster-embedded
。
public class SentinelApolloTokenClusterInitFunc implements InitFunc {
@Override
public void init() throws Exception {
// Register client dynamic rule data source.
initDynamicFlowRuleProperty();
initDynamicParamRuleProperty();
// Register token client related data source.
// Token client common config:
ClusterClientConfigInitializer.doInit();
// Token client assign config (e.g. target token server) retrieved from assign map:
ClusterClientAssignConfigInitializer.doInit();
// Register token server related data source.
// Register dynamic rule data source supplier for token server:
ClusterRuleSupplierInitializer.doInit();
// Token server transport config extracted from assign map:
ServerTransportConfigInitializer.doInit();
// Init cluster state property for extracting mode from cluster map data source.
ClusterStateInitializer.doInit();
// ServerFlowConfig 配置
ServerFlowConfigInitializer.doInit();
}
}
把 SPI
的扩展切入类放置 \resources\META-INF\services\com.alibaba.csp.sentinel.init.InitFunc
文件中,内容为
com.zhangmen.solar.sentinel.SentinelApolloTokenClusterInitFunc
任浩军,掌门基础架构部研发经理。曾就职于平安银行、万达、惠普,曾负责平安银行平台架构部 PaaS
平台基础服务框架研发。10 多年开源经历,Github
ID:@HaojunRen,Nepxion
开源社区创始人,Nacos
Group Member,Spring Cloud Alibaba
& Nacos
& Sentinel
& OpenTracing
Committer。
张彬彬,掌门基础架构部架构师。主要负责公司微服务架构以及开源项目的开发和实践,开源项目爱好者,多年互联网开发经验。
非常感谢阿里巴巴 Sentinel
项目负责人宿何在落地过程中的支持和帮助。
监控 Java 中间件 API Nacos 开发工具 时序数据库 Sentinel 微服务 Spring
版权声明:本文首发在云栖社区,遵循云栖社区版权声明:本文内容由互联网用户自发贡献,版权归用户作者所有,云栖社区不为本文内容承担相关法律责任。云栖社区已升级为阿里云开发者社区。如果您发现本文中有涉嫌抄袭的内容,欢迎发送邮件至:[email protected] 进行举报,并提供相关证据,一经查实,阿里云开发者社区将协助删除涉嫌侵权内容。
原文链接
本文为云栖社区原创内容,未经允许不得转载。