SparkSQL操作Hive Table(enableHiveSupport())

Spark SQL支持对Hive的读写操作。然而因为Hive有很多依赖包,所以这些依赖包没有包含在默认的Spark包里面。如果Hive依赖的包能在classpath找到,Spark将会自动加载它们。需要注意的是,这些Hive依赖包必须复制到所有的工作节点上,因为它们为了能够访问存储在Hive的数据,会调用Hive的序列化和反序列化(SerDes)包。Hive的配置文件hive-site.xmlcore-site.xml(security配置)和hdfs-site.xml(HDFS配置)是保存在conf目录下面。
当使用Hive时,必须初始化一个支持Hive的SparkSession,用户即使没有部署一个Hive的环境仍然可以使用Hive。当没有配置hive-site.xml时,Spark会自动在当前应用目录创建metastore_db和创建由spark.sql.warehouse.dir配置的目录,如果没有配置,默认是当前应用目录下的spark-warehouse目录。
注意:从Spark 2.0.0版本开始,hive-site.xml里面的hive.metastore.warehouse.dir属性已经被spark.sql.warehouse.dir替代,用于指定warehouse的默认数据路径(必须有写权限)。

import java.io.Serializable;  
import java.util.ArrayList;  
import java.util.List;  

import org.apache.spark.api.java.function.MapFunction;  
import org.apache.spark.sql.Dataset;  
import org.apache.spark.sql.Encoders;  
import org.apache.spark.sql.Row;  
import org.apache.spark.sql.SparkSession;  

public static class Record implements Serializable {  
  private int key;  
  private String value;  

  public int getKey() {  
    return key;  
  }  

  public void setKey(int key) {  
    this.key = key;  
  }  

  public String getValue() {  
    return value;  
  }  

  public void setValue(String value) {  
    this.value = value;  
  }  
}  

// warehouseLocation points to the default location for managed databases and tables  
String warehouseLocation = "/spark-warehouse";  
// init spark session with hive support  
SparkSession spark = SparkSession  
  .builder()  
  .appName("Java Spark Hive Example")  
  .master("local[*]")  
  .config("spark.sql.warehouse.dir", warehouseLocation)  
  .enableHiveSupport()  
  .getOrCreate();  

spark.sql("CREATE TABLE IF NOT EXISTS src (key INT, value STRING)");  
spark.sql("LOAD DATA LOCAL INPATH 'examples/src/main/resources/kv1.txt' INTO TABLE src");  

// Queries are expressed in HiveQL  
spark.sql("SELECT * FROM src").show();  
// +---+-------+  
// |key|  value|  
// +---+-------+  
// |238|val_238|  
// | 86| val_86|  
// |311|val_311|  
// ...  
// only showing top 20 rows  

// Aggregation queries are also supported.  
spark.sql("SELECT COUNT(*) FROM src").show();  
// +--------+  
// |count(1)|  
// +--------+  
// |    500 |  
// +--------+  

// The results of SQL queries are themselves DataFrames and support all normal functions.  
Dataset sqlDF = spark.sql("SELECT key, value FROM src WHERE key < 10 ORDER BY key");  

// The items in DaraFrames are of type Row, which lets you to access each column by ordinal.  
Dataset stringsDS = sqlDF.map(row -> "Key: " + row.get(0) + ", Value: " + row.get(1), Encoders.STRING());  
stringsDS.show();  
// +--------------------+  
// |               value|  
// +--------------------+  
// |Key: 0, Value: val_0|  
// |Key: 0, Value: val_0|  
// |Key: 0, Value: val_0|  
// ...  

// You can also use DataFrames to create temporary views within a SparkSession.  
List records = new ArrayList();  
for (int key = 1; key < 100; key++) {  
  Record record = new Record();  
  record.setKey(key);  
  record.setValue("val_" + key);  
  records.add(record);  
}  
Dataset recordsDF = spark.createDataFrame(records, Record.class);  
recordsDF.createOrReplaceTempView("records");  

// Queries can then join DataFrames data with data stored in Hive.  
spark.sql("SELECT * FROM records r JOIN src s ON r.key = s.key").show();  
// +---+------+---+------+  
// |key| value|key| value|  
// +---+------+---+------+  
// |  2| val_2|  2| val_2|  
// |  2| val_2|  2| val_2|  
// |  4| val_4|  4| val_4|  
// ...  
// only showing top 20 rows  

如果使用eclipse运行上述代码的话需要添加spark-hive的jars,下面是maven的配置:

  
<dependency>  
    <groupId>org.apache.sparkgroupId>  
    <artifactId>spark-hive_2.11artifactId>  
    <version>2.1.0version>  
dependency>

否则的话会遇到下面错误:

Exception in thread "main" java.lang.IllegalArgumentException: Unable to instantiate SparkSession with Hive support because Hive classes are not found.  
    at org.apache.spark.sql.SparkSession$Builder.enableHiveSupport(SparkSession.scala:815)  
    at JavaSparkHiveExample.main(JavaSparkHiveExample.java:17)  

与不同版本Hive Metastore的交互

Spark SQL对Hive的支持其中一个最重要的部分是与Hive metastore的交互,使得Spark SQL可以访问Hive表的元数据。从Spark 1.4.0版本开始,Spark SQL使用下面的配置可以用于查询不同版本的Hive metastores。需要注意的是,本质上Spark SQL会使用编译后的Hive 1.2.1版本的那些类来用于内部操作(serdes、UDFs、UDAFs等等)。

这里写图片描述

你可能感兴趣的:(Spark,SQL)