concurrenthashmap详解

阅读前需知:此文章是小白我在学习过程中做的笔记,可能有许多错误之处,欢迎大家指出并提出宝贵的意见,感谢参考的原创文章的作者们!
  最后小伙伴们觉得勉勉强强可以的话点个赞呗!

更多个人笔记以及面试技巧可以到本人的Github上观看:Java_Note

目录

  • 一、基本介绍
    • 1、为什么要用ConcurrentHashMap
    • 2、concurrenthashmap1.7和1.8
    • 1) JDK1.7:
    • 2)JDK1.8
  • concurrenthashmap1.7
  • 一、基本介绍
  • 二、数据结构
    • 1、结构介绍
    • 2、图解
  • 三、实现原理
    • 1、初始化
      • 1)参数介绍
      • 2)源码分析
    • 2、扩容: rehash
      • 1)源码分析
    • 3、put 过程分析
    • 1)过程分析
    • 2)源码分析
    • 4、get
  • ConcurrentHashMap JDK1.8:
  • 一、数据结构
  • 二、底层实现
    • 1、初始化
    • 2、 put 过程分析
      • 1)put流程
      • 2)代码实现
    • 3、get
      • 1)流程分析
    • 4、扩容:tryPresize
      • 2)
    • 5、数据迁移: transfer
    • 参考文章:


一、基本介绍

1、为什么要用ConcurrentHashMap

  随着并发量的增加,HashMap并没有使用同步,在多线程情况下使用HashMap的时候就会出现并发问题,不安全。而HashTable虽然是安全的,但是使用的是synchronized 锁整表操作,当多线程并发的情况下,都要竞争同一把锁,导致效率极其低下,这样在性能上将会产生很大的影响。而在JDK1.5后为了改进Hashtable的痛点,ConcurrentHashMap应运而生。

  ConcurrentHashMap只是针对put方法进行了加锁,而对于get方法并没有采用加锁的操作,因为具体的值,在Segment的HashEntry里面是volatile的,基于happens-before(先行发生)原则,对数据的写先行发生于对数据的读,所以再读取的时候获取到的必然是最新的结果。

  因为对数组的操作,在主内存和工作内存中,load和use、assgin和store是必然连在一起的,一旦使用(use)发生,那load必先行发生于use之前,use前必然从主内存中加载最新的值到工作内存的变量副本里。而一旦赋值(assgin),必然先行发生于store将值传递给主内存,在write到主内存中去。所以get方式无需加锁也能获取到最新的结果。

2、concurrenthashmap1.7和1.8

1) JDK1.7:

  • 使用分段锁机制实现;即Segment 通过继承ReentrantLock来进行加锁
  • 两个静态内部类 HashEntry链表数组 和 Segment数组;
  • 查询遍历链表效率太慢;

2)JDK1.8

  • 使用数组+链表+红黑树数据结构,加锁则采用CAS和synchronized实现

  • 将 1.7 中存放数据的 HashEntry 改为 Node,但作用都是相同的



concurrenthashmap1.7

一、基本介绍

  1、在JDK1.5~1.7版本,Java使用了分段锁机制实现ConcurrentHashMap.

  2、ConcurrentHashMap在对象中保存了一个Segment数组,即将整个Hash表划分为多个分段;而每个Segment元素,即每个分段则类似于一个Hashtable;这样,在执行put操作时首先根据hash算法定位到元素属于哪个Segment,然后对该Segment加锁即可。因此,ConcurrentHashMap在多线程并发编程中可以实现多线程put操作

  3、concurrencyLevel: 并行级别、并发数、Segment 数,怎么翻译不重要,理解它。默认是 16,也就是说 ConcurrentHashMap 有 16 个 Segments,所以理论上,这个时候,最多可以同时支持 16 个线程并发写,只要它们的操作分别分布在不同的 Segment 上。这个值可以在初始化的时候设置为其他值,但是一旦初始化以后,它是不可以扩容的。

注意:Segment内部是由数组+链表组成的。

二、数据结构

1、结构介绍

数组+链表

concurrenthashmap包含两个静态内部类 HashEntrySegment

  HashEntry用来封装映射表的键值对;Segment用来充当锁的角色,每个 Segment对象守护整个散列映射表的若干个桶。每个桶是由若干个 HashEntry 对象链接起来的链表。一个 ConcurrentHashMap 实例中包含由若干个 Segment 对象组成的数组。

  简单理解就是,ConcurrentHashMap 是一个 Segment 数组,Segment 通过继承ReentrantLock来进行加锁,所以每次需要加锁的操作锁住的是一个segment,这样只要保证每个Segment是线程安全的,也就实现了全局的线程安全。

2、图解

concurrenthashmap详解_第1张图片

三、实现原理

1、初始化

1)参数介绍

  • initialCapacity: 初始容量,这个值指的是整个 ConcurrentHashMap 的初始容量,实际操作的时候需要平均分给每个 Segment。
  • loadFactor: 负载因子,之前我们说了,Segment 数组不可以扩容,所以这个负载因子是给每个 Segment 内部使用的。

2)源码分析

public ConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel) {
    if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
        throw new IllegalArgumentException();
    if (concurrencyLevel > MAX_SEGMENTS)
        concurrencyLevel = MAX_SEGMENTS;
    // Find power-of-two sizes best matching arguments
    int sshift = 0;
    int ssize = 1;    

    // 计算并行级别 ssize,因为要保持并行级别是 2 的 n 次方
    while (ssize < concurrencyLevel) {
        ++sshift;
        ssize <<= 1;
    }   
     // 我们这里先不要那么烧脑,用默认值,concurrencyLevel 为 16,sshift 为 4
    // 那么计算出 segmentShift 为 28,segmentMask 为 15,后面会用到这两个值
    this.segmentShift = 32 - sshift;
    this.segmentMask = ssize - 1;

    if (initialCapacity > MAXIMUM_CAPACITY)
    initialCapacity = MAXIMUM_CAPACITY;

    // initialCapacity 是设置整个 map 初始的大小,
    // 这里根据 initialCapacity 计算 Segment 数组中每个位置可以分到的大小
    // 如 initialCapacity 为 64,那么每个 Segment 或称之为"槽"可以分到 4 个
    int c = initialCapacity / ssize;
    if (c * ssize < initialCapacity)
        ++c;
    // 默认 MIN_SEGMENT_TABLE_CAPACITY 是 2,这个值也是有讲究的,因为这样的话,对于具体的槽上,
    // 插入一个元素不至于扩容,插入第二个的时候才会扩容
    int cap = MIN_SEGMENT_TABLE_CAPACITY; 
    while (cap < c)
        cap <<= 1;
        
     // 创建 Segment 数组,
    // 并创建数组的第一个元素 segment[0]
    Segment<K,V> s0 =
        new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
                         (HashEntry<K,V>[])new HashEntry[cap]);
    Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
    // 往数组写入 segment[0]
    UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
    this.segments = ss;
}   

初始化完成,我们得到了一个 Segment 数组。

我们就当是用 new ConcurrentHashMap() 无参构造函数进行初始化的,那么初始化完成后:

  • Segment 数组长度为 16,不可以扩容
  • Segment[i] 的默认大小为 2,负载因子是 0.75,得出初始阈值为 1.5,也就是以后插入第一个元素不会触发扩容,插入第二个会进行第一次扩容
  • 这里初始化了 segment[0],其他位置还是 null,至于为什么要初始化 segment[0],后面的代码会介绍
  • 当前 segmentShift 的值为 32 - 4 = 28,segmentMask 为 16 - 1 = 15,姑且把它们简单翻译为移位数和掩码,这两个值马上就会用到

2、扩容: rehash

注意:segment 数组不能扩容,扩容是 segment 数组某个位置内部的数组 HashEntry[] 进行扩容,扩容后,容量为原来的 2 倍

1)源码分析

// 方法参数上的 node 是这次扩容后,需要添加到新的数组中的数据。
private void rehash(HashEntry<K,V> node) {
    HashEntry<K,V>[] oldTable = table;
    int oldCapacity = oldTable.length;
    // 2 倍
    int newCapacity = oldCapacity << 1;
    threshold = (int)(newCapacity * loadFactor);
    // 创建新数组
    HashEntry<K,V>[] newTable =
        (HashEntry<K,V>[]) new HashEntry[newCapacity];
    // 新的掩码,如从 16 扩容到 32,那么 sizeMask 为 31,对应二进制 ‘000...00011111’
    int sizeMask = newCapacity - 1;

    // 遍历原数组,老套路,将原数组位置 i 处的链表拆分到 新数组位置 i 和 i+oldCap 两个位置
    for (int i = 0; i < oldCapacity ; i++) {
        // e 是链表的第一个元素
        HashEntry<K,V> e = oldTable[i];
        if (e != null) {
            HashEntry<K,V> next = e.next;
            // 计算应该放置在新数组中的位置,
            // 假设原数组长度为 16,e 在 oldTable[3] 处,那么 idx 只可能是 3 或者是 3 + 16 = 19
            int idx = e.hash & sizeMask;
            if (next == null)   // 该位置处只有一个元素,那比较好办
                newTable[idx] = e;
            else { // Reuse consecutive sequence at same slot
                // e 是链表表头
                HashEntry<K,V> lastRun = e;
                // idx 是当前链表的头结点 e 的新位置
                int lastIdx = idx;

                // 下面这个 for 循环会找到一个 lastRun 节点,这个节点之后的所有元素是将要放到一起的
                for (HashEntry<K,V> last = next;
                     last != null;
                     last = last.next) {
                    int k = last.hash & sizeMask;
                    if (k != lastIdx) {
                        lastIdx = k;
                        lastRun = last;
                    }
                }
                // 将 lastRun 及其之后的所有节点组成的这个链表放到 lastIdx 这个位置
                newTable[lastIdx] = lastRun;
                // 下面的操作是处理 lastRun 之前的节点,
                //    这些节点可能分配在另一个链表中,也可能分配到上面的那个链表中
                for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
                    V v = p.value;
                    int h = p.hash;
                    int k = h & sizeMask;
                    HashEntry<K,V> n = newTable[k];
                    newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
                }
            }
        }
    }
    // 将新来的 node 放到新数组中刚刚的 两个链表之一 的 头部
    int nodeIndex = node.hash & sizeMask; // add the new node
    node.setNext(newTable[nodeIndex]);
    newTable[nodeIndex] = node;
    table = newTable;
}

3、put 过程分析

1)过程分析

  • 根据 key 计算出对应的 hash 值
  • 根据 hash 值找到对应的Segment 对象:
  • 在这个 Segment 中执行具体的 put 操作:

2)源码分析

public V put(K key, V value) {
    Segment<K,V> s;
    if (value == null)
        throw new NullPointerException();
    // 1. 计算 key 的 hash 值
    int hash = hash(key);
    // 2. 根据 hash 值找到 Segment 数组中的位置 j
    //    hash 是 32 位,无符号右移 segmentShift(28) 位,剩下高 4 位,
    //    然后和 segmentMask(15) 做一次与操作,也就是说 j 是 hash 值的高 4 位,也就是槽的数组下标
    int j = (hash >>> segmentShift) & segmentMask;
    // 刚刚说了,初始化的时候初始化了 segment[0],但是其他位置还是 null,
    // ensureSegment(j) 对 segment[j] 进行初始化
    if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
         (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
        s = ensureSegment(j);
    // 3. 插入新值到 槽 s 中
    return s.put(key, hash, value, false);
}

4、get

get过程很简单,可以参考hashmap的get过程



ConcurrentHashMap JDK1.8:

在JDK1.7之前,ConcurrentHashMap是通过分段锁机制来实现的,所以其最大并发度受Segment的个数限制。

  因此,在JDK1.8中,ConcurrentHashMap的实现原理摒弃了这种设计,而是选择了与HashMap类似的数组+链表+红黑树的方式实现,而加锁则采用CAS和synchronized实现

一、数据结构

concurrenthashmap详解_第2张图片

二、底层实现

1、初始化

// 这构造函数里,什么都不干
public ConcurrentHashMap() {
}
public ConcurrentHashMap(int initialCapacity) {
    if (initialCapacity < 0)
        throw new IllegalArgumentException();
    int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
               MAXIMUM_CAPACITY :
               tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
    this.sizeCtl = cap;
}

  这个初始化方法有点意思,通过提供初始容量,计算了 sizeCtl,sizeCtl = 【 (1.5 * initialCapacity + 1),然后向上取最近的 2 的 n 次方】。如 initialCapacity 为 10,那么得到 sizeCtl 为 16,如果 initialCapacity 为 11,得到 sizeCtl 为 32。

2、 put 过程分析

1)put流程

  • 根据 key 计算出 hashcode 。
  • 判断是否需要进行初始化。
  • f 即为当前 key 定位出的 Node,如果为空表示当前位置可以写入数据,利用 CAS 尝试写入,失败则自旋保证成功。
  • 如果当前位置的 hashcode == MOVED == -1,则需要进行扩容。
  • 如果都不满足,则利用 synchronized 锁写入数据。
  • 如果数量大于 TREEIFY_THRESHOLD 则要转换为红黑树。

2)代码实现

public V put(K key, V value) {
    return putVal(key, value, false);
}
final V putVal(K key, V value, boolean onlyIfAbsent) {
    if (key == null || value == null) throw new NullPointerException();
    // 得到 hash 值
    int hash = spread(key.hashCode());
    // 用于记录相应链表的长度
    int binCount = 0;
    for (Node<K,V>[] tab = table;;) {
        Node<K,V> f; int n, i, fh;
        // 如果数组"空",进行数组初始化
        if (tab == null || (n = tab.length) == 0)
            // 初始化数组,后面会详细介绍
            tab = initTable();

        // 找该 hash 值对应的数组下标,得到第一个节点 f
        else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
            // 如果数组该位置为空,
            // 用一次 CAS 操作将这个新值放入其中即可,这个 put 操作差不多就结束了,可以拉到最后面了
            // 如果 CAS 失败,那就是有并发操作,进到下一个循环就好了
            if (casTabAt(tab, i, null,
                         new Node<K,V>(hash, key, value, null)))
                break;                   // no lock when adding to empty bin
        }
        // hash 居然可以等于 MOVED,这个需要到后面才能看明白,不过从名字上也能猜到,肯定是因为在扩容
        else if ((fh = f.hash) == MOVED)
            // 帮助数据迁移,这个等到看完数据迁移部分的介绍后,再理解这个就很简单了
            tab = helpTransfer(tab, f);

        else { // 到这里就是说,f 是该位置的头结点,而且不为空

            V oldVal = null;
            // 获取数组该位置的头结点的监视器锁
            synchronized (f) {
                if (tabAt(tab, i) == f) {
                    if (fh >= 0) { // 头结点的 hash 值大于 0,说明是链表
                        // 用于累加,记录链表的长度
                        binCount = 1;
                        // 遍历链表
                        for (Node<K,V> e = f;; ++binCount) {
                            K ek;
                            // 如果发现了"相等"的 key,判断是否要进行值覆盖,然后也就可以 break 了
                            if (e.hash == hash &&
                                ((ek = e.key) == key ||
                                 (ek != null && key.equals(ek)))) {
                                oldVal = e.val;
                                if (!onlyIfAbsent)
                                    e.val = value;
                                break;
                            }
                            // 到了链表的最末端,将这个新值放到链表的最后面
                            Node<K,V> pred = e;
                            if ((e = e.next) == null) {
                                pred.next = new Node<K,V>(hash, key,
                                                          value, null);
                                break;
                            }
                        }
                    }
                    else if (f instanceof TreeBin) { // 红黑树
                        Node<K,V> p;
                        binCount = 2;
                        // 调用红黑树的插值方法插入新节点
                        if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                       value)) != null) {
                            oldVal = p.val;
                            if (!onlyIfAbsent)
                                p.val = value;
                        }
                    }
                }
            }

            if (binCount != 0) {
                // 判断是否要将链表转换为红黑树,临界值和 HashMap 一样,也是 8
                if (binCount >= TREEIFY_THRESHOLD)
                    // 这个方法和 HashMap 中稍微有一点点不同,那就是它不是一定会进行红黑树转换,
                    // 如果当前数组的长度小于 64,那么会选择进行数组扩容,而不是转换为红黑树
                    //    具体源码我们就不看了,扩容部分后面说
                    treeifyBin(tab, i);
                if (oldVal != null)
                    return oldVal;
                break;
            }
        }
    }
    // 
    addCount(1L, binCount);
    return null;
}

3、get

1)流程分析

  • 计算 hash 值 根据 hash 值找到数组对应位置: (n - 1) & h 根据该位置处结点性质进行相应查找
  • 如果该位置为 null,那么直接返回 null 就可以了
  • 如果该位置处的节点刚好就是我们需要的,返回该节点的值即可
  • 如果该位置节点的 hash 值小于 0,说明正在扩容,或者是红黑树,后面我们再介绍 find 方法 如果以上 3 条都不满足,那就是链表,进行遍历比对即可

4、扩容:tryPresize

  这个方法要完完全全看懂还需要看之后的 transfer 方法,读者应该提前知道这点。

  扩容后数组容量为原来的 2 倍。

2)

  核心在于 sizeCtl 值的操作,首先将其设置为一个负数,然后执行 transfer(tab, null),再下一个循环将 sizeCtl 加 1,并执行 transfer(tab, nt),之后可能是继续 sizeCtl 加 1,并执行 transfer(tab, nt)。

5、数据迁移: transfer

=========== 待完善 ===================


参考文章:

https://www.pdai.tech/md/java/thread/java-thread-x-juc-collection-ConcurrentHashMap.html

https://www.ibm.com/developerworks/cn/java/java-lo-concurrenthashmap/index.html

https://crossoverjie.top/2018/07/23/java-senior/ConcurrentHashMap/

https://www.itqiankun.com/article/concurrenthashmap-principle#%E6%80%BB%E7%BB%93

你可能感兴趣的:(java基础)