Time Limit: 6000/4000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 160 Accepted Submission(s): 40
小 A 是社团里的工具人,有一天他的朋友给了他一个 n 个点,m 条边的正权连通无向图,要他计算所有点两两之间的最短路。
作为一个工具人,小 A 熟练掌握着 floyd 算法,设 w[i][j] 为原图中 (i,j) 之间的权值最小的边的权值,若没有边则 w[i][j]=无穷大。特别地,若 i=j,则 w[i][j]=0。
Floyd 的 C++ 实现如下:
```c++
for(int k=1;k<=p;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
w[i][j]=min(w[i][j],w[i][k]+w[k][j]);
```
当 p=n 时,该代码就是我们所熟知的 floyd,然而小 A 为了让代码跑的更快点,所以想减少 p 的值。
令 Di,j 为最小的非负整数 x,满足当 p=x 时,点 i 与点 j 之间的最短路被正确计算了。
现在你需要求 ∑ni=1∑nj=1Di,j,虽然答案不会很大,但为了显得本题像个计数题,你还是需要将答案对 998244353 取模后输出。
Input
第一行一个正整数
T(T≤30) 表示数据组数
对于每组数据:
第一行两个正整数 n,m(1≤n≤1000,m≤2000),表示点数和边数。
保证最多只有 5 组数据满足 max(n,m)>200
接下来 m 行,每行三个正整数 u,v,w 描述一条边权为 w 的边 (u,v),其中 1≤w≤109
对于每组数据:
第一行两个正整数 n,m(1≤n≤1000,m≤2000),表示点数和边数。
保证最多只有 5 组数据满足 max(n,m)>200
接下来 m 行,每行三个正整数 u,v,w 描述一条边权为 w 的边 (u,v),其中 1≤w≤109
Output
输出
T 行,第 i 行一个非负整数表示第 i 组数据的答案
Sample Input
1 4 4 1 2 1 2 3 1 3 4 1 4 1 1
Sample Output
6
题解:跑堆优化的 Dijkstra(修改过),每个点跑一遍,然后边跑边记录D[i][j]。具体操作看代码。
#pragma comment(linker, "/STACK:1024000000,1024000000") #pragma GCC optimize(2) #include#include #include #include #include #include<set> #include #include<string> #include