pandas

首先导入相关模块并加载数据集到 Python 环境中:

import pandas as pd
import numpy as np
data = pd.read_csv("train.csv", index_col="Loan_ID")

#1 – 布尔索引

如果需要以其它列数据值为条件过滤某一列的数据,您会怎么处理?例如建立一个列表,列表中全部为未能毕业但曾获得贷款的女性。这里可以使用布尔索引,代码如下:

 

#2 – Apply 函数

Apply 函数是处理数据和建立新变量的常用函数之一。在向数据框的每一行或每一列传递指定函数后,Apply 函数会返回相应的值。这个由 Apply 传入的函数可以是系统默认的或者用户自定义的。例如,在下面的例子中它可以用于查找每一行和每一列中的缺失值。

#Create a new function:
def num_missing(x):
return sum(x.isnull())

#Applying per column:
print "Missing values per column:"
print data.apply(num_missing, axis=0) #axis=0 defines that function is to be applied on each column

#Applying per row:
print "nMissing values per row:"
print data.apply(num_missing, axis=1).head() #axis=1 defines that function is to be applied on each row

这样我们就得到了所需的结果。

注:由于输出结果包含多行数据,第二个输出函数使用了 head() 函数以限定输出数据长度。在不限定输入参数时 head() 函数默认输出 5 行数据。

#3 – 填补缺失值

fillna() 函数可一次性完成填补功能。它可以利用所在列的均值/众数/中位数来替换该列的缺失数据。下面利用“Gender”、“Married”、和“Self_Employed”列中各自的众数值填补对应列的缺失数据。

 

转载于:https://www.cnblogs.com/mandy-study/p/7871568.html

你可能感兴趣的:(pandas)