1.1 线性回归
线性回归是你能用 TF 搭出来的最简单的模型。
操作步骤
导入所需的包。
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import sklearn.datasets as ds
import sklearn.model_selection as ms
导入数据,并进行预处理。我们使用鸢尾花数据集中的后两个品种,根据萼片长度预测花瓣长度。
iris = ds.load_iris()
x_ = iris.data[50:, 0]
y_ = iris.data[50:, 2]
x_ = np.expand_dims(x_, 1)
y_ = np.expand_dims(y_, 1)
x_train, x_test, y_train, y_test = \
ms.train_test_split(x_, y_, train_size=0.7, test_size=0.3)
定义所需超参数。为了方便展示,我们进行一元线性回归,但是特征数还是单独定义出来,便于各位扩展。
变量 | 含义 |
---|---|
n_input |
样本特征数 |
n_epoch |
迭代数 |
lr |
学习率 |
n_input = 1
n_epoch = 2000
lr = 0.05
搭建模型。
变量 | 含义 |
---|---|
x |
输入 |
y |
真实标签 |
w |
权重 |
b |
偏置 |
z |
输出,也就是标签预测值 |
x = tf.placeholder(tf.float64, [None, n_input])
y = tf.placeholder(tf.float64, [None, 1])
w = tf.Variable(np.random.rand(n_input, 1))
b = tf.Variable(np.random.rand(1, 1))
z = x @ w + b
定义损失、优化操作、和 R 方度量指标。
我们使用 MSE 损失函数,如下:
其中Z
是模型输出,Y
是真实标签,n
是样本量。由于我们并不需要手动计算梯度,系数1/2
就省了。
变量 | 含义 |
---|---|
loss |
损失 |
op |
优化操作 |
y_mean |
y 的均值 |
r_sqr |
R 方值 |
注
AdamOptimizer
是目前 TF 中最好的优化器。我们一开始就是用这个优化器,可以避免很多坑。
loss = tf.reduce_mean((z - y) ** 2)
op = tf.train.AdamOptimizer(lr).minimize(loss)
y_mean = tf.reduce_mean(y)
r_sqr = 1 - tf.reduce_sum((y - z) ** 2) / tf.reduce_sum((y - y_mean) ** 2)
使用训练集训练模型。
losses = []
r_sqrs = []
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for e in range(n_epoch):
_, loss_ = sess.run([op, loss], feed_dict={x: x_train, y: y_train})
losses.append(loss_)
使用测试集计算 R 方。
r_sqr_ = sess.run(r_sqr, feed_dict={x: x_test, y: y_test})
r_sqrs.append(r_sqr_)
每一百步打印损失和度量值。
if e % 100 == 0:
print(f'epoch: {e}, loss: {loss_}, r_sqr: {r_sqr_}')
得到拟合直线:
x_min = x_.min() - 1
x_max = x_.max() + 1
x_rng = np.arange(x_min, x_max, 0.1)
x_rng = np.expand_dims(x_rng, 1)
y_rng = sess.run(z, feed_dict={x: x_rng})
输出:
epoch: 0, loss: 5.246808867412861, r_sqr: -3.3580545179249626
epoch: 100, loss: 0.25004445837782013, r_sqr: 0.6041164943701897
epoch: 200, loss: 0.23843082653827946, r_sqr: 0.6236514954522687
epoch: 300, loss: 0.2269390629355829, r_sqr: 0.6450002345272472
epoch: 400, loss: 0.21722877318795483, r_sqr: 0.6634834235462157
epoch: 500, loss: 0.20989747215734747, r_sqr: 0.6779371113275436
epoch: 600, loss: 0.20484664052302196, r_sqr: 0.6884008829992205
epoch: 700, loss: 0.20163908809697076, r_sqr: 0.6955228132490906
epoch: 800, loss: 0.19975160600281744, r_sqr: 0.7001369890134553
epoch: 900, loss: 0.19871975070335382, r_sqr: 0.703016047551422
epoch: 1000, loss: 0.198195164170451, r_sqr: 0.7047660277836822
epoch: 1100, loss: 0.19794716641396798, r_sqr: 0.7058129761451779
epoch: 1200, loss: 0.19783823837210518, r_sqr: 0.7064340685560638
epoch: 1300, loss: 0.19779385162364785, r_sqr: 0.7068004742345046
epoch: 1400, loss: 0.19777710515759306, r_sqr: 0.7070149540532822
epoch: 1500, loss: 0.19777126958353536, r_sqr: 0.7071387737013775
epoch: 1600, loss: 0.1977693968167384, r_sqr: 0.7072087165692382
epoch: 1700, loss: 0.1977688451271843, r_sqr: 0.7072470717155128
epoch: 1800, loss: 0.19776869649521, r_sqr: 0.707267350669178
epoch: 1900, loss: 0.19776866002369958, r_sqr: 0.7072776300744172
绘制整个数据集的预测结果。
plt.figure()
plt.plot(x_, y_, 'b.', label='Data')
plt.plot(x_rng.ravel(), y_rng.ravel(), 'r', label='Model')
plt.title('Data and Model')
plt.legend()
plt.show()
https://github.com/wizardforcel/how2tf/raw/master/img/1-1-1.png
绘制训练集上的损失。
plt.figure()
plt.plot(losses)
plt.title('Loss on Training Set')
plt.xlabel('#epoch')
plt.ylabel('MSE')
plt.show()
https://github.com/wizardforcel/how2tf/raw/master/img/1-1-2.png
绘制测试集上的 R 方。
plt.figure()
plt.plot(r_sqrs)
plt.title('$R^2$ on Testing Set')
plt.xlabel('#epoch')
plt.ylabel('$R^2$')
plt.show()
https://github.com/wizardforcel/how2tf/raw/master/img/1-1-3.png
扩展阅读
- 斯坦福 CS229 笔记:二、单变量线性回归
- 斯坦福 CS229 笔记:四、多变量线性回归