https://blog.csdn.net/liwei16611/article/details/82531858
【FreeRTOS】小白进阶之如何创建和使用FreeRTOS消息队列(一)
xQueueSendToBack() 与 xQueueSendToFront() API 函数
xQueueSendToBack()用于将数据发送到队列尾;而xQueueSendToFront()用于将数据发送到队列首。
xQueueSend()完全等同于xQueueSendToBack()。
xQueueOverwrite()
与xQueueSendToBack()函数一样,xQueueOverwrite()函数将数据发送到队列。 与xQueueSendToBack()不同的是如果队列已满,则xQueueOverwrite()将覆盖队列中已有的数据。xQueueOverwrite()只应与长度为1的队列一起使用。 该限制避免了实现在队满时需要选择队列中的哪个数据项被覆盖的实现。
注意:不要从中断服务程序调用xQueueOverwrite()。中断安全版本为xQueueOverwriteFromISR()。
xQueueSend( MsgQueue, ( void* )&SendNum, 0 );
向队列中填充内容,第二参数需要取出地址并进行类型转换,第三个参数设置等待时间,在队列满的情况下再往队列中填充内容的话便会阻塞任务,直到等待时间溢出;若此处填充的内容为0的话,则立即返回插入队列结果(成功或失败)
xQueueReceive( MsgQueue, &ReceiveNum, 100/portTICK_RATE_MS )
从队列中取出内容,第二个参数需要取出地址,第三个参数为等待最大时间,若在等待的时间内队列中没有数据则返回阻塞任务。
函数 xQueueSendFromISR 用于中断服务程序中消息发送。
第 1 个参数是消息队列句柄。
第 2 个参数要传递数据地址,每次发送都是将消息队列创建函数 xQueueCreate 所指定的单个消息大小复制到消息队列空间中。
第3个参数用于保存是否有高优先级任务准备就绪。如果函数执行完毕后,此参数的数值是pdTRUE,说明有高优先级任务要执行,否则没有。
返回值,如果消息成功发送返回 pdTRUE,否则返回 errQUEUE_FULL。
举例
void TIM1_BRK_TIM9_IRQHandler(void)
{
u8 *buffer;
BaseType_t xTaskWokenByReceive=pdFALSE;
BaseType_t err;
if(TIM_GetITStatus(TIM9,TIM_IT_Update)==SET) //溢出中断
{
buffer=mymalloc(SRAMIN,USART_REC_LEN);
if(Message_Queue!=NULL)
{
memset(buffer,0,USART_REC_LEN); //清除缓冲区
err=xQueueReceiveFromISR(Message_Queue,buffer,&xTaskWokenByReceive);//请求消息Message_Queue 得到的第三个参数将用于 下面portYIELD_FROM_ISR的任务切换
if(err==pdTRUE) //接收到消息
{
disp_str(buffer); //在LCD上显示接收到的消息
}
}
myfree(SRAMIN,buffer); //释放内存
portYIELD_FROM_ISR(xTaskWokenByReceive);//如果需要的话进行一次任务切换
}
TIM_ClearITPendingBit(TIM9,TIM_IT_Update); //清除中断标志位
}
那么由上可知 xQueueSendFromISR 的函数参数跟用法
如下
if((USART_RX_STA&0x8000)&&(Message_Queue!=NULL))
{
xQueueSendFromISR(Message_Queue,USART_RX_BUF,&xHigherPriorityTaskWoken);//向队列中发送数据
USART_RX_STA=0;
memset(USART_RX_BUF,0,USART_REC_LEN);//清除数据接收缓冲区USART_RX_BUF,用于下一次数据接收
portYIELD_FROM_ISR(xHigherPriorityTaskWoken);//如果需要的话进行一次任务切换
}
例子
#include "sys.h"
#include "delay.h"
#include "usart.h"
#include "led.h"
#include "timer.h"
#include "lcd.h"
#include "key.h"
#include "beep.h"
#include "string.h"
#include "malloc.h"
#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
/************************************************
ALIENTEK 探索者STM32F407开发板 FreeRTOS实验13-1
FreeRTOS队列操作实验-库函数版本
技术支持:www.openedv.com
淘宝店铺:http://eboard.taobao.com
关注微信公众平台微信号:"正点原子",免费获取STM32资料。
广州市星翼电子科技有限公司
作者:正点原子 @ALIENTEK
************************************************/
//任务优先级
#define START_TASK_PRIO 1
//任务堆栈大小
#define START_STK_SIZE 256
//任务句柄
TaskHandle_t StartTask_Handler;
//任务函数
void start_task(void *pvParameters);
//任务优先级
#define TASK1_TASK_PRIO 2
//任务堆栈大小
#define TASK1_STK_SIZE 256
//任务句柄
TaskHandle_t Task1Task_Handler;
//任务函数
void task1_task(void *pvParameters);
//任务优先级
#define KEYPROCESS_TASK_PRIO 3
//任务堆栈大小
#define KEYPROCESS_STK_SIZE 256
//任务句柄
TaskHandle_t Keyprocess_Handler;
//任务函数
void Keyprocess_task(void *pvParameters);
//按键消息队列的数量
#define KEYMSG_Q_NUM 1 //按键消息队列的数量
#define MESSAGE_Q_NUM 4 //发送数据的消息队列的数量
QueueHandle_t Key_Queue; //按键值消息队列句柄
QueueHandle_t myKey_Queue; //按键值消息队列传递给中断的句柄
QueueHandle_t Message_Queue; //信息队列句柄
//LCD刷屏时使用的颜色
int lcd_discolor[14]={ WHITE, BLACK, BLUE, BRED,
GRED, GBLUE, RED, MAGENTA,
GREEN, CYAN, YELLOW,BROWN,
BRRED, GRAY };
//用于在LCD上显示接收到的队列的消息
//str: 要显示的字符串(接收到的消息)
void disp_str(u8* str)
{
LCD_Fill(5,230,110,245,WHITE); //先清除显示区域
LCD_ShowString(5,230,100,16,16,str);
}
//加载主界面
void freertos_load_main_ui(void)
{
POINT_COLOR = RED;
LCD_ShowString(10,10,200,16,16,"ATK STM32F103/407");
LCD_ShowString(10,30,200,16,16,"FreeRTOS Examp 13-1");
LCD_ShowString(10,50,200,16,16,"Message Queue");
LCD_ShowString(10,70,220,16,16,"KEY_UP:LED1 KEY0:Refresh LCD");
LCD_ShowString(10,90,200,16,16,"KEY1:SendMsg KEY2:BEEP");
POINT_COLOR = BLACK;
LCD_DrawLine(0,107,239,107); //画线
LCD_DrawLine(119,107,119,319); //画线
LCD_DrawRectangle(125,110,234,314); //画矩形
POINT_COLOR = RED;
LCD_ShowString(0,130,120,16,16,"DATA_Msg Size:");
LCD_ShowString(0,170,120,16,16,"DATA_Msg rema:");
LCD_ShowString(0,210,100,16,16,"DATA_Msg:");
POINT_COLOR = BLUE;
}
//查询Message_Queue队列中的总队列数量和剩余队列数量
void check_msg_queue(void)
{
u8 *p;
u8 msgq_remain_size; //消息队列剩余大小
u8 msgq_total_size; //消息队列总大小
taskENTER_CRITICAL(); //进入临界区
msgq_remain_size=uxQueueSpacesAvailable(Message_Queue);//得到队列剩余大小
msgq_total_size=uxQueueMessagesWaiting(Message_Queue)+uxQueueSpacesAvailable(Message_Queue);//得到队列总大小,总大小=使用+剩余的。
p=mymalloc(SRAMIN,20); //申请内存
sprintf((char*)p,"Total Size:%d",msgq_total_size); //显示DATA_Msg消息队列总的大小
LCD_ShowString(10,150,100,16,16,p);
sprintf((char*)p,"Remain Size:%d",msgq_remain_size); //显示DATA_Msg剩余大小
LCD_ShowString(10,190,100,16,16,p);
myfree(SRAMIN,p); //释放内存
taskEXIT_CRITICAL(); //退出临界区
}
int main(void)
{
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_4);//设置系统中断优先级分组4
delay_init(168); //初始化延时函数
uart_init(115200); //初始化串口
LED_Init(); //初始化LED端口
KEY_Init(); //初始化按键
BEEP_Init(); //初始化蜂鸣器
LCD_Init(); //初始化LCD
TIM9_Int_Init(5000,16800-1); //初始化定时器9,周期500ms
my_mem_init(SRAMIN); //初始化内部内存池
freertos_load_main_ui(); //加载主UI
//创建开始任务
xTaskCreate((TaskFunction_t )start_task, //任务函数
(const char* )"start_task", //任务名称
(uint16_t )START_STK_SIZE, //任务堆栈大小
(void* )NULL, //传递给任务函数的参数
(UBaseType_t )START_TASK_PRIO, //任务优先级
(TaskHandle_t* )&StartTask_Handler); //任务句柄
vTaskStartScheduler(); //开启任务调度
}
//开始任务任务函数
void start_task(void *pvParameters)
{
taskENTER_CRITICAL(); //进入临界区
//创建消息队列
Key_Queue=xQueueCreate(KEYMSG_Q_NUM,sizeof(u8)); //创建消息Key_Queue
myKey_Queue=xQueueCreate(KEYMSG_Q_NUM,sizeof(u8)); //创建消息Key_Queue
Message_Queue=xQueueCreate(MESSAGE_Q_NUM,USART_REC_LEN); //创建消息Message_Queue,队列项长度是串口接收缓冲区长度
//创建TASK1任务
xTaskCreate((TaskFunction_t )task1_task,
(const char* )"task1_task",
(uint16_t )TASK1_STK_SIZE,
(void* )NULL,
(UBaseType_t )TASK1_TASK_PRIO,
(TaskHandle_t* )&Task1Task_Handler);
//创建TASK2任务
xTaskCreate((TaskFunction_t )Keyprocess_task,
(const char* )"keyprocess_task",
(uint16_t )KEYPROCESS_STK_SIZE,
(void* )NULL,
(UBaseType_t )KEYPROCESS_TASK_PRIO,
(TaskHandle_t* )&Keyprocess_Handler);
vTaskDelete(StartTask_Handler); //删除开始任务
taskEXIT_CRITICAL(); //退出临界区
}
//task1任务函数
void task1_task(void *pvParameters)
{
u8 key,i=0;
BaseType_t err;
while(1)
{
key=KEY_Scan(0); //扫描按键
if((Key_Queue!=NULL)&&(key)) //消息队列Key_Queue创建成功,并且按键被按下
{
err=xQueueSend(Key_Queue,&key,10);
if(err==errQUEUE_FULL) //发送按键值
{
printf("队列Key_Queue已满,数据发送失败!\r\n");
}
}
i++;
// if(i%10==0) check_msg_queue();//检Message_Queue队列的容量
if(i==50)
{
i=0;
LED0=!LED0;
}
vTaskDelay(10); //延时10ms,也就是10个时钟节拍
}
}
//Keyprocess_task函数
void Keyprocess_task(void *pvParameters)
{
u8 num,key;
while(1)
{
if(Key_Queue!=NULL)
{
if(xQueueReceive(Key_Queue,&key,portMAX_DELAY))//请求消息Key_Queue
{
switch(key)
{
case WKUP_PRES: //KEY_UP控制LED1
LED1=!LED1;
break;
case KEY2_PRES: //KEY2控制蜂鸣器
BEEP=!BEEP;
break;
case KEY0_PRES: //KEY0刷新LCD背景
num++;
LCD_Fill(126,111,233,313,lcd_discolor[num%14]);
break;
}
}
}
vTaskDelay(10); //延时10ms,也就是10个时钟节拍
}
}
#include "timer.h"
#include "led.h"
#include "led.h"
#include "malloc.h"
#include "usart.h"
#include "string.h"
#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
//////////////////////////////////////////////////////////////////////////////////
//本程序只供学习使用,未经作者许可,不得用于其它任何用途
//ALIENTEK STM32F407开发板
//定时器 驱动代码
//正点原子@ALIENTEK
//技术论坛:www.openedv.com
//创建日期:2014/5/4
//版本:V1.0
//版权所有,盗版必究。
//Copyright(C) 广州市星翼电子科技有限公司 2014-2024
//All rights reserved
//////////////////////////////////////////////////////////////////////////////////
//FreeRTOS时间统计所用的节拍计数器
volatile unsigned long long FreeRTOSRunTimeTicks;
//初始化TIM3使其为FreeRTOS的时间统计提供时基
void ConfigureTimeForRunTimeStats(void)
{
//定时器3初始化,定时器时钟为84M,分频系数为84-1,所以定时器3的频率
//为84M/84=1M,自动重装载为50-1,那么定时器周期就是50us
FreeRTOSRunTimeTicks=0;
TIM3_Int_Init(50-1,84-1); //初始化TIM3
}
//通用定时器3中断初始化
//arr:自动重装值。
//psc:时钟预分频数
//定时器溢出时间计算方法:Tout=((arr+1)*(psc+1))/Ft us.
//Ft=定时器工作频率,单位:Mhz
//这里使用的是定时器3!
void TIM3_Int_Init(u16 arr,u16 psc)
{
TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3,ENABLE); ///使能TIM3时钟
TIM_TimeBaseInitStructure.TIM_Period = arr; //自动重装载值
TIM_TimeBaseInitStructure.TIM_Prescaler=psc; //定时器分频
TIM_TimeBaseInitStructure.TIM_CounterMode=TIM_CounterMode_Up; //向上计数模式
TIM_TimeBaseInitStructure.TIM_ClockDivision=TIM_CKD_DIV1;
TIM_TimeBaseInit(TIM3,&TIM_TimeBaseInitStructure);//初始化TIM3
TIM_ITConfig(TIM3,TIM_IT_Update,ENABLE); //允许定时器3更新中断
TIM_Cmd(TIM3,ENABLE); //使能定时器3
NVIC_InitStructure.NVIC_IRQChannel=TIM3_IRQn; //定时器3中断
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=0x01; //抢占优先级1
NVIC_InitStructure.NVIC_IRQChannelSubPriority=0x00; //子优先级0
NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE;
NVIC_Init(&NVIC_InitStructure);
}
//通用定时器9中断初始化
//arr:自动重装值。
//psc:时钟预分频数
//定时器溢出时间计算方法:Tout=((arr+1)*(psc+1))/Ft us.
//Ft=定时器工作频率,单位:Mhz
//这里使用的是定时器9!
void TIM9_Int_Init(u16 arr,u16 psc)
{
TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM9,ENABLE); //使能TIM9时钟
TIM_TimeBaseInitStructure.TIM_Period = arr; //自动重装载值
TIM_TimeBaseInitStructure.TIM_Prescaler=psc; //定时器分频
TIM_TimeBaseInitStructure.TIM_CounterMode=TIM_CounterMode_Up; //向上计数模式
TIM_TimeBaseInitStructure.TIM_ClockDivision=TIM_CKD_DIV1;
TIM_TimeBaseInit(TIM9,&TIM_TimeBaseInitStructure); //初始化TIM9
TIM_ITConfig(TIM9,TIM_IT_Update,ENABLE); //允许定时器9更新中断
TIM_Cmd(TIM9,ENABLE); //使能定时器9
NVIC_InitStructure.NVIC_IRQChannel=TIM1_BRK_TIM9_IRQn; //定时器9中断
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=0x08; //抢占优先级8
NVIC_InitStructure.NVIC_IRQChannelSubPriority=0x00; //子优先级0
NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE;
NVIC_Init(&NVIC_InitStructure);
}
//定时器3中断服务函数
void TIM3_IRQHandler(void)
{
if(TIM_GetITStatus(TIM3,TIM_IT_Update)==SET) //溢出中断
{
FreeRTOSRunTimeTicks++;
}
TIM_ClearITPendingBit(TIM3,TIM_IT_Update); //清除中断标志位
}
extern QueueHandle_t Message_Queue; //信息队列句柄
extern QueueHandle_t myKey_Queue; //信息队列句柄
extern void disp_str(u8* str);
//定时器9中断服务函数
void TIM1_BRK_TIM9_IRQHandler(void)
{
u8 *buffer;
BaseType_t xTaskWokenByReceive=pdFALSE;
BaseType_t err;
if(TIM_GetITStatus(TIM9,TIM_IT_Update)==SET) //溢出中断
{
buffer=mymalloc(SRAMIN,USART_REC_LEN);
if(Message_Queue!=NULL)
{
memset(buffer,0,USART_REC_LEN); //清除缓冲区
//printf("err=xQueueReceiveFromISR\n");
err=xQueueReceiveFromISR(Message_Queue,buffer,&xTaskWokenByReceive);//请求消息Message_Queue
if(err==pdTRUE) //接收到消息
{
//printf("buffer is %d\n",*buffer);
disp_str(buffer); //在LCD上显示接收到的消息
}
}
myfree(SRAMIN,buffer); //释放内存
portYIELD_FROM_ISR(xTaskWokenByReceive);//如果需要的话进行一次任务切换
}
TIM_ClearITPendingBit(TIM9,TIM_IT_Update); //清除中断标志位
}
#include "sys.h"
#include "usart.h"
#include "string.h"
//////////////////////////////////////////////////////////////////////////////////
//如果使用ucos,则包括下面的头文件即可.
#if SYSTEM_SUPPORT_OS
#include "FreeRTOS.h" //FreeRTOS使用
#include "task.h"
#include "queue.h"
#endif
//////////////////////////////////////////////////////////////////////////////////
//本程序只供学习使用,未经作者许可,不得用于其它任何用途
//ALIENTEK STM32F4探索者开发板
//串口1初始化
//正点原子@ALIENTEK
//技术论坛:www.openedv.com
//修改日期:2014/6/10
//版本:V1.5
//版权所有,盗版必究。
//Copyright(C) 广州市星翼电子科技有限公司 2009-2019
//All rights reserved
//********************************************************************************
//V1.3修改说明
//支持适应不同频率下的串口波特率设置.
//加入了对printf的支持
//增加了串口接收命令功能.
//修正了printf第一个字符丢失的bug
//V1.4修改说明
//1,修改串口初始化IO的bug
//2,修改了USART_RX_STA,使得串口最大接收字节数为2的14次方
//3,增加了USART_REC_LEN,用于定义串口最大允许接收的字节数(不大于2的14次方)
//4,修改了EN_USART1_RX的使能方式
//V1.5修改说明
//1,增加了对UCOSII的支持
//////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////
//加入以下代码,支持printf函数,而不需要选择use MicroLIB
#if 1
#pragma import(__use_no_semihosting)
//标准库需要的支持函数
struct __FILE
{
int handle;
};
FILE __stdout;
//定义_sys_exit()以避免使用半主机模式
void _sys_exit(int x)
{
x = x;
}
//重定义fputc函数
int fputc(int ch, FILE *f)
{
while((USART1->SR&0X40)==0);//循环发送,直到发送完毕
USART1->DR = (u8) ch;
return ch;
}
#endif
#if EN_USART1_RX //如果使能了接收
//串口1中断服务程序
//注意,读取USARTx->SR能避免莫名其妙的错误
u8 USART_RX_BUF[USART_REC_LEN]; //接收缓冲,最大USART_REC_LEN个字节.
//接收状态
//bit15, 接收完成标志
//bit14, 接收到0x0d
//bit13~0, 接收到的有效字节数目
u16 USART_RX_STA=0; //接收状态标记
//初始化IO 串口1
//bound:波特率
void uart_init(u32 bound){
//GPIO端口设置
GPIO_InitTypeDef GPIO_InitStructure;
USART_InitTypeDef USART_InitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA,ENABLE); //使能GPIOA时钟
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1,ENABLE);//使能USART1时钟
//串口1对应引脚复用映射
GPIO_PinAFConfig(GPIOA,GPIO_PinSource9,GPIO_AF_USART1); //GPIOA9复用为USART1
GPIO_PinAFConfig(GPIOA,GPIO_PinSource10,GPIO_AF_USART1); //GPIOA10复用为USART1
//USART1端口配置
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9 | GPIO_Pin_10; //GPIOA9与GPIOA10
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;//复用功能
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //速度50MHz
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; //推挽复用输出
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; //上拉
GPIO_Init(GPIOA,&GPIO_InitStructure); //初始化PA9,PA10
//USART1 初始化设置
USART_InitStructure.USART_BaudRate = bound;//波特率设置
USART_InitStructure.USART_WordLength = USART_WordLength_8b;//字长为8位数据格式
USART_InitStructure.USART_StopBits = USART_StopBits_1;//一个停止位
USART_InitStructure.USART_Parity = USART_Parity_No;//无奇偶校验位
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//无硬件数据流控制
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; //收发模式
USART_Init(USART1, &USART_InitStructure); //初始化串口1
USART_Cmd(USART1, ENABLE); //使能串口1
//USART_ClearFlag(USART1, USART_FLAG_TC);
#if EN_USART1_RX
USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);//开启相关中断
//Usart1 NVIC 配置
NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;//串口1中断通道
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=7;//抢占优先级7
NVIC_InitStructure.NVIC_IRQChannelSubPriority =0; //子优先级0
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道使能
NVIC_Init(&NVIC_InitStructure); //根据指定的参数初始化VIC寄存器、
#endif
}
extern QueueHandle_t Message_Queue; //信息队列句柄
void USART1_IRQHandler(void) //串口1中断服务程序
{
u8 Res;
BaseType_t xHigherPriorityTaskWoken;
if(USART_GetITStatus(USART1, USART_IT_RXNE) != RESET) //接收中断(接收到的数据必须是0x0d 0x0a结尾)
{
Res =USART_ReceiveData(USART1);//(USART1->DR); //读取接收到的数据
if((USART_RX_STA&0x8000)==0)//接收未完成
{
if(USART_RX_STA&0x4000)//接收到了0x0d
{
if(Res!=0x0a)USART_RX_STA=0;//接收错误,重新开始
else USART_RX_STA|=0x8000; //接收完成了
}
else //还没收到0X0D
{
if(Res==0x0d)USART_RX_STA|=0x4000;
else
{
USART_RX_BUF[USART_RX_STA&0X3FFF]=Res ;
USART_RX_STA++;
if(USART_RX_STA>(USART_REC_LEN-1))USART_RX_STA=0;//接收数据错误,重新开始接收
}
}
}
}
//就向队列发送接收到的数据
if((USART_RX_STA&0x8000)&&(Message_Queue!=NULL))
{
xQueueSendFromISR(Message_Queue,USART_RX_BUF,&xHigherPriorityTaskWoken);//向队列中发送数据
USART_RX_STA=0;
memset(USART_RX_BUF,0,USART_REC_LEN);//清除数据接收缓冲区USART_RX_BUF,用于下一次数据接收
portYIELD_FROM_ISR(xHigherPriorityTaskWoken);//如果需要的话进行一次任务切换
}
}
#endif