- 贪心算法 greedy algorithm
yuebo_zhao
算法c++数据结构
贪心算法greedyalgorithm」是一种常见的解决优化问题的算法,其基本思想是在问题的每个决策阶段,都选择当前看起来最优的选择,即贪心地做出局部最优的决策,以期获得全局最优解。贪心算法简洁且高效,在许多实际问题中有着广泛的应用。贪心算法和动态规划都常用于解决优化问题。它们之间存在一些相似之处,比如都依赖最优子结构性质,但工作原理不同。动态规划会根据之前阶段的所有决策来考虑当前决策,并使用过去
- styled-components:现代React样式解决方案
司南锤
前端react.js前端前端框架
文章目录引言什么是styled-components?核心特性安装与配置基础安装TypeScript支持Babel插件(可选)基础用法创建样式组件基于props的动态样式高级用法样式继承复合样式与条件渲染样式化现有组件主题系统创建主题访问主题响应式设计媒体查询助手动画与过渡关键帧动画过渡效果最佳实践1.组件命名2.样式组织3.避免过度嵌套4.使用TypeScript性能优化1.避免在渲染中创建样式
- 2021.10.4 比赛题整理
伍叁壹_
比赛整理题解c++
2021.10.42021CSPJ初二初一冲刺七链接集合总结炸了炸了。。T3半天做了个寂寞。对算法不熟悉。T1:简单思维题;T2:KMPnxt数组的运用;T3:二分+图,代码实现可用并查集;T4:四维树形dp。T1题意设a0←1a_0\gets1a0←1,an←ai+aja_n\getsa_i+a_jan←ai+aj(i,j在[0,n−1)[0,n-1)[0,n−1)范围内随机)。求对于给定的nn
- Java并发性能优化|读写锁与互斥锁解析
云心雨禅
技术实操java性能优化开发语言
前言在Java的世界中,多线程如同一场精密的交响乐。而“锁”,就是指挥家手中的那根指挥棒——它决定了谁先演奏、谁后进入、谁必须等待。本文将带你走进两种常见的同步机制:普通互斥锁(如synchronized和ReentrantLock)与读写分离的读写锁(ReentrantReadWriteLock),通过概念对比、代码示例、性能测试和最佳实践,帮助你理解它们的本质区别与适用场景。掌握锁的使用之道,
- Redis性能优化指南
Redis的性能优化需要从内存管理、配置参数调优、客户端行为优化三个核心层面入手,结合业务场景平衡吞吐量、延迟和资源消耗。以下是具体优化策略:一、内存管理与压缩技术1.内存优化策略选择高效数据结构:优先使用Hash(存储对象)替代多个String(减少Key数量)。每一份对立的数据都有一个对应的key需要存储一份元数据(如类型、过期时间、指针等)。使用Ziplist编码的小型数据(如hash-ma
- 七、性能优化
瓜子三百克
Flutter性能优化flutter
目录1.如何检测Flutter应用的性能问题?2.什么是重绘边界(RepaintBoundary)?3.如何避免不必要的重建?4.`const`构造函数在优化中起什么作用?5.如何优化长列表的性能?6.如何减少应用启动时间?1.如何检测Flutter应用的性能问题?核心工具:工具用途使用方式DevTools性能面板分析UI渲染时间、GPU耗时、CPU耗时flutterrun--profile→da
- 应用程序性能优化:从操作系统到算法的全方位攻略
Spring_java_gg
性能优化性能优化算法
作为一名应用程序性能优化专家,我将带你踏上一段生动有趣的旅程,探索如何从操作系统、编程语言、数据库和算法四个方面提升你的应用性能。准备好了吗?让我们开始吧!1.操作系统层面的优化想象一下,操作系统就像是一个大型的调度中心,负责管理所有的资源和任务。为了让这个调度中心更加高效,我们可以采取以下措施:合理配置内核参数:调整操作系统的内核参数,如文件描述符限制、网络缓冲区大小等,可以显著提高应用的响应速
- Windows Server性能优化
程序猿学长
性能优化windows性能优化
在WindowsServer上进行性能优化,可以通过调整系统参数和配置来提升服务器的响应速度和稳定性。以下是一些关键的优化配置项及其详细说明和示例:优化虚拟内存设置说明:虚拟内存(分页文件)用于扩展物理内存,合理配置可以提高系统性能。默认值:系统自动管理建议优化值:将分页文件设置为固定大小,初始大小和最大大小相同,通常为物理内存的1.5到2倍。配置示例:打开控制面板->系统和安全->系统点击左侧的
- 贪心算法(GREEDY ALGORITHM)证明实践
m0_72431373
贪心算法算法leetcode
基础概念贪心算法Formal的解释这里就不介绍了,有兴趣的直接去wikipedia上理解。简单地来说,贪心算法就是在某种规律下不断选取局部最优解,从而达到全局最优。《挑战程序设计竞赛》中有一个很直观的解释:一直向前!证明方法既然贪心算法是利用规律选取局部最优解,那么我们选取规律所得出的全局解就不一定是全局最优解。因此,我们需要证明,我们所选这个规律是可以得出一个全局最优解的。注意这里所谓的可以得出
- Redis 的特性、工作机制与性能优化全解(含搭建实战教程)
文章目录二、Redis的核心特性三、Redis的工作机制解析单线程模型(性能为何强大?)数据结构是性能的关键持久化机制(数据如何存下来?)四、Redis性能优化实战1.优化内存使用2.提升并发性能3.使用分片/集群机制4.异步处理五、Redis搭建流程(Linux环境)1.下载与解压2.编译并安装3.修改配置文件(推荐复制一份)4.启动Redis5.客户端连接测试六、Redis运维技巧与监控命令七
- 【5.1.1 漫画Java核心并发编程】
钺商科技
漫画Javajava开发语言
漫画Java核心并发编程人物介绍小明:对Java并发编程感兴趣的开发者架构师老王:Java并发编程专家,精通各种并发工具Java并发编程基础小明:“老王,Java并发编程为什么这么复杂?”架构师老王:“因为并发编程需要处理多个线程同时访问共享资源的问题!主要挑战包括:线程安全、死锁、性能优化等。但掌握了核心原理,就能写出高效的并发程序。”并发编程核心概念Java并发编程体系|+----------
- 【RTSP从零实践】4、使用RTP协议封装并传输AAC
博客主页:https://blog.csdn.net/wkd_007博客内容:嵌入式开发、Linux、C语言、C++、数据结构、音视频本文内容:介绍怎么使用RTP协议封装并传输AAC金句分享:你不能选择最好的,但最好的会来选择你——泰戈尔⏰发布时间⏰:2025-07-0118:43:18本文未经允许,不得转发!!!目录一、概述二、实现步骤、实现细节✨2.1、实现AAC文件读取器✨2.2、实现AAC
- SIMULINK开发项目实例 1000 例专栏之第663例:基于simulink的SVPWM技术的研究的三相电压源逆变器建模仿真
xiaoheshang_123
MATLAB开发项目实例1000例专栏手把手教你学MATLAB专栏matlabsimulink
目录准备工作步骤详解第一步:创建Simulink项目第二步:选择并添加合适的库组件第三步:构建基本的三相电压源逆变器模型第四步:实现SVPWM算法第五步:仿真与调试第六步:结果分析第七步:优化与改进第八步:导出与部署总结三相电压源逆变器(VoltageSourceInverter,VSI)在电力电子中是将直流电转换为交流电的一种重要设备,广泛应用于电机驱动、不间断电源(UPS)、可再生能源系统等领
- 【推荐算法课程二】推荐算法介绍-深度学习算法
盒子6910
运维视角下的广告业务算法推荐算法深度学习运维开发运维人工智能
三、深度学习在推荐系统中的应用3.1深度学习推荐模型的演化关系图3.2AutoRec——单隐层神经网络推荐模型3.2.1AutoRec模型的基本原理AutoRec模型是一个标准的自编码器,它的基本原理是利用协同过滤中的共现矩阵,完成物品向量或者用户向量的自编码。再利用自编码的结果得到用户对物品的预估评分,进而进行推荐排序。什么是自编码器?自编码器是指能够完成数据“自编码”的模型。无论是图像、音频,
- 构建智能企业知识管理平台:动态知识图谱与语义检索系统
AI天才研究院
AgenticAI实战AI大模型企业级应用开发实战AI人工智能与大数据知识图谱人工智能ai
构建智能企业知识管理平台:动态知识图谱与语义检索系统关键词:知识管理平台、动态知识图谱、语义检索、知识图谱构建、语义检索算法摘要:本文详细探讨了构建智能企业知识管理平台的核心技术,重点介绍了动态知识图谱和语义检索系统的原理与实现。通过分析知识图谱的构建方法和语义检索算法,结合实际案例,展示了如何利用这些技术提升企业的知识管理水平。文章内容包括背景介绍、核心概念、算法原理、系统架构设计、项目实战以及
- DeepFM算法原理及应用场景
DeepFM(DeepFactorizationMachine)是一种结合了因子分解机(FactorizationMachines,FM)和深度神经网络(DNN)的混合模型,主要用于处理高维稀疏数据(如推荐系统中的点击率预测)。其核心思想是同时捕捉低阶(线性)和高阶(非线性)特征交互。1.算法原理模型结构如下:FM部分:负责捕捉低阶特征交互(如一阶和二阶特征组合)。一阶项:线性特征权重。二阶项:通
- 巅峰对决,超三十万奖金等你挑战!第十届信也科技杯全球AI算法大赛火热开赛!
中杯可乐多加冰
前沿资讯分享科技人工智能算法计算机视觉机器学习深度学习
信也科技今年跟IJCAI和CIKM这两大全球顶级AI会议合作,这场比赛被全球人工智能顶会CIKM收录为官方赛事单元,获奖选手有机会全球人工智能顶会创造更大的影响力。一、赛事概况随着深度伪造技术的高度发展,人工智能产业走深向实,生成合成技术开始呈现工具化和普及化趋势。在生成合成内容质量显著提升的当下,基于换脸攻击的身份冒用和欺诈事件在全球范围内激增,严重威胁个人隐私和公共数据安全。第十届信也科技杯全
- 大模型 AI智能体Coze知识库从使用到实战详解
非著名架构师
大模型知识文档人工智能Coze知识库
一、Coze知识库核心价值解析1.1知识库技术架构创新Coze知识库采用四层混合架构设计,在2025年大模型应用中展现出独特优势:存储层:支持向量数据库(Qdrant)+图数据库(Neo4j)双引擎处理层:集成PDF/PPT/Excel等23种文件解析器检索层:混合检索算法(BM25+稠密检索+语义路由)应用层:RAG(检索增强生成)优化接口与传统方案相比,查询准确率提升42%,特别擅长处理:专业
- Python设置国内镜像教程
wh3933
python开发语言
####引言Python是一种广泛使用的高级编程语言,用于各种编程任务,从简单的脚本到复杂的机器学习算法。在安装Python包时,通常需要从Python包索引(PyPI)下载。由于网络原因,直接从PyPI下载可能速度较慢,因此,使用国内的镜像源可以显著提高下载速度。本文将详细介绍如何在Python中设置国内镜像。####文章目的本篇文章旨在指导用户如何将Python的包管理工具`pip`的默认源切
- React与Vue的区别?
扎西_德勒
vue.jsreact.jsjavascript
一、区别:1.语法Vue采用自己特有的模板语法;React是单向的,采用jsx语法创建react元素。2.监听数据变化的实现原理不同Vue2.0通过Object.defineproperty()方法的getter/setter属性,实现数据劫持,每次修改完数据会触发diff算法(双端对比)React默认是通过shouldComponentUpdata生命周期来决定是否需要渲染更新,再触发它的dif
- 2025年6月AIGC发展全景:技术轻量化、Agent产业化与伦理新挑战
Loving_enjoy
计算机学科论文创新点深度学习人工智能经验分享facebook
>**当一块消费级GPU能解高考数学题,当AI智能体接管医院诊断流程,我们正站在人机协作新纪元的门槛上**2025年6月,AIGC领域迎来关键转折点——**模型轻量化**让百亿参数算法飞入寻常设备,**多模态融合**打破文本与视觉的次元壁,而**Agent智能体**正从实验室概念蜕变为产业核心引擎。这场变革不仅重塑技术范式,更在重构商业逻辑与人类创造力边界。---###一、技术突破:垂直化、轻量化
- 代码随想录算法训练营第十一天
天天开心(∩_∩)
算法
LeetCode.150逆波兰表达式求值题目链接逆波兰表达式求值题解classSolution{publicintevalRPN(String[]tokens){Stackcstack=newStackset=newHashSetdeque=newLinkedListdeque.getLast()){deque.removeLast();}deque.add(val);}intpeek(){ret
- 解读国密非对称加密算法SM2
云水木石
详解国密算法数据安全
本文先介绍非对称加密算法,然后聊一聊椭圆曲线密码算法(EllipticCurveCryptography,ECC),最后才是本文的主题国密非对称加密算法SM2。因为我的数学知识有限,对于算法涉及的一些复杂的理论知识,也是不懂,所以本文不会涉及理论,仅仅从编程的角度解读一下SM2。在进行国密算法开发的这段时间,我主要参考的书籍是《深入浅出HTTPS:从原理到实战》,微信读书上也有电子版,如果你也是进
- 鸿蒙设备开发OpenHarmony深度解读之设备认证:HiChain机制部分源码解析1(推荐模块之外)
往期推文全新看点(文中附带最新·鸿蒙全栈学习笔记)鸿蒙(HarmonyOS)北向开发知识点记录~鸿蒙(OpenHarmony)南向开发保姆级知识点汇总~鸿蒙应用开发与鸿蒙系统开发哪个更有前景?嵌入式开发适不适合做鸿蒙南向开发?看完这篇你就了解了~对于大前端开发来说,转鸿蒙开发究竟是福还是祸?鸿蒙岗位需求突增!移动端、PC端、IoT到底该怎么选?记录一场鸿蒙开发岗位面试经历~持续更新中……一、概述H
- 【归纳】C++入门算法模版总结(超级详细!!!)(包括高精度,排序,枚举,二分,搜索,动态规划等)
0.前言本文针对有一定算法基础的选手制作,收录了大部分算法的模板,详细解说可以点进去我提供的链接了解。或者进入我的主页给一点支持!本人也是一名新手,如果这篇文章有不严谨的地方或者不懂的地方可以在评论区留言,我会为你们一一解答的。【归纳】C++入门算法模版总结(包括高精度,排序,枚举,二分,搜索,动态规划等)(超级详细!!!)0.前言1.高精度1.1.单独实现1.1.1.高精度加法1.1.2.高精度
- 嵌入式入门学习——5了解寄存器如何控制单片机
星火嵌入式
嵌入式入门学习单片机
0系列文章入口嵌入式入门学习——0快速入门,Let‘sDoIt!1.内容简介武侠的内功和招式之间的关系类似于编程中的技术和计算原理之间的关系。招式是千变万化的,而内功心法则稳定而深厚。内功心法的深度决定了可以学习的招式变术的上限高度。单片机的控制最终是要落实到寄存器上的。使用库函数或者使用高级语言是招式,了解单片机的寄存器则是内功。2.引言练习武功讲究内外兼修,一味学习技巧,而忽略本质的结果就是一
- (阳:算法霸权 / 阴:数据确权)→当GDPR类法规覆盖53%经济体量时,催生出隐私计算新范式
百态老人
人工智能机器学习深度学习算法
当GDPR类法规覆盖53%经济体量时,隐私计算新范式的兴起可归因于以下多维度因素的相互作用:一、算法霸权与数据确权的矛盾激化算法霸权的危害大型科技公司通过算法歧视、大数据杀熟等手段形成垄断优势,利用数据优势操控用户行为,导致消费者权益受损。这种"算法黑箱"不仅加剧市场不公平,还阻碍数据要素的自由流动。例如,算法框架的底层逻辑掌握在少数企业手中,产生"数据黑箱"问题。数据确权的立法需求数据权属不明确
- 从小白到进阶:解锁linux与c语言高级编程知识点嵌入式开发的任督二脉(3)
small_wh1te_coder
c嵌入式linuxc语言汇编c++嵌入式硬件面试
【硬核揭秘】Linux与C高级编程:从入门到精通,你的全栈之路!第五部分:C语言高级编程——结构体、共用体、枚举、内存管理、GDB调试、Makefile全解析嘿,各位C语言的“卷王”们!在前面的旅程中,我们深入探索了Linux的奥秘,从命令行操作到Shell脚本编程,再到网络文件服务,你的Linux技能已经突飞猛进。现在,是时候回到我们的“老本行”——C语言了!你可能已经能够编写各种简单的C程序,
- 扒开嵌入式硬件的底裤(上)!从 PCB 到 FPGA/IC 设计,小白到 CTO 的必学秘籍 硬核知识点全揭秘!从c语言入门到mcu与arm架构及外设相关
small_wh1te_coder
嵌入式内核嵌入式开发嵌入式硬件算法c汇编面试驱动开发单片机
【硬核揭秘】嵌入式硬件工程师的“底裤”:从入门到牛逼,你必须知道的一切!第一部分:破冰与认知——嵌入式硬件工程师的“世界观”嘿,各位C语言老铁,以及所有对“让硬件听你话”充满好奇的朋友们!我是你们的老朋友,一个常年“折腾”在代码和电路板之间的码农。今天,咱们要聊一个真正能让你“硬”起来的话题——如何成为一个合格、优秀、牛逼的嵌入式硬件工程师!你可能正坐在电脑前,敲着C语言代码,刷着力扣算法题,心里
- 机器学习宝典——第6章
爱看烟花的码农
机器学习人工智能
第6章:聚类算法(Clustering)你好,同学!欢迎来到无监督学习的世界。与监督学习不同,这里的我们没有“标准答案”(标签),我们的目标是在数据中发现隐藏的、内在的结构。聚类算法就是实现这一目标的核心工具,它试图将数据集中的样本划分为若干个不相交的子集,我们称之为“簇”(cluster)。本章我们将深入探讨三种最具代表性的聚类算法:K-均值(K-Means)、层次聚类(Hierarchical
- Linux的Initrd机制
被触发
linux
Linux 的 initrd 技术是一个非常普遍使用的机制,linux2.6 内核的 initrd 的文件格式由原来的文件系统镜像文件转变成了 cpio 格式,变化不仅反映在文件格式上, linux 内核对这两种格式的 initrd 的处理有着截然的不同。本文首先介绍了什么是 initrd 技术,然后分别介绍了 Linux2.4 内核和 2.6 内核的 initrd 的处理流程。最后通过对 Lin
- maven本地仓库路径修改
bitcarter
maven
默认maven本地仓库路径:C:\Users\Administrator\.m2
修改maven本地仓库路径方法:
1.打开E:\maven\apache-maven-2.2.1\conf\settings.xml
2.找到
 
- XSD和XML中的命名空间
darrenzhu
xmlxsdschemanamespace命名空间
http://www.360doc.com/content/12/0418/10/9437165_204585479.shtml
http://blog.csdn.net/wanghuan203/article/details/9203621
http://blog.csdn.net/wanghuan203/article/details/9204337
http://www.cn
- Java 求素数运算
周凡杨
java算法素数
网络上对求素数之解数不胜数,我在此总结归纳一下,同时对一些编码,加以改进,效率有成倍热提高。
第一种:
原理: 6N(+-)1法 任何一个自然数,总可以表示成为如下的形式之一: 6N,6N+1,6N+2,6N+3,6N+4,6N+5 (N=0,1,2,…)
- java 单例模式
g21121
java
想必单例模式大家都不会陌生,有如下两种方式来实现单例模式:
class Singleton {
private static Singleton instance=new Singleton();
private Singleton(){}
static Singleton getInstance() {
return instance;
}
- Linux下Mysql源码安装
510888780
mysql
1.假设已经有mysql-5.6.23-linux-glibc2.5-x86_64.tar.gz
(1)创建mysql的安装目录及数据库存放目录
解压缩下载的源码包,目录结构,特殊指定的目录除外:
- 32位和64位操作系统
墙头上一根草
32位和64位操作系统
32位和64位操作系统是指:CPU一次处理数据的能力是32位还是64位。现在市场上的CPU一般都是64位的,但是这些CPU并不是真正意义上的64 位CPU,里面依然保留了大部分32位的技术,只是进行了部分64位的改进。32位和64位的区别还涉及了内存的寻址方面,32位系统的最大寻址空间是2 的32次方= 4294967296(bit)= 4(GB)左右,而64位系统的最大寻址空间的寻址空间则达到了
- 我的spring学习笔记10-轻量级_Spring框架
aijuans
Spring 3
一、问题提问:
→ 请简单介绍一下什么是轻量级?
轻量级(Leightweight)是相对于一些重量级的容器来说的,比如Spring的核心是一个轻量级的容器,Spring的核心包在文件容量上只有不到1M大小,使用Spring核心包所需要的资源也是很少的,您甚至可以在小型设备中使用Spring。
 
- mongodb 环境搭建及简单CURD
antlove
WebInstallcurdNoSQLmongo
一 搭建mongodb环境
1. 在mongo官网下载mongodb
2. 在本地创建目录 "D:\Program Files\mongodb-win32-i386-2.6.4\data\db"
3. 运行mongodb服务 [mongod.exe --dbpath "D:\Program Files\mongodb-win32-i386-2.6.4\data\
- 数据字典和动态视图
百合不是茶
oracle数据字典动态视图系统和对象权限
数据字典(data dictionary)是 Oracle 数据库的一个重要组成部分,这是一组用于记录数据库信息的只读(read-only)表。随着数据库的启动而启动,数据库关闭时数据字典也关闭 数据字典中包含
数据库中所有方案对象(schema object)的定义(包括表,视图,索引,簇,同义词,序列,过程,函数,包,触发器等等)
数据库为一
- 多线程编程一般规则
bijian1013
javathread多线程java多线程
如果两个工两个以上的线程都修改一个对象,那么把执行修改的方法定义为被同步的,如果对象更新影响到只读方法,那么只读方法也要定义成同步的。
不要滥用同步。如果在一个对象内的不同的方法访问的不是同一个数据,就不要将方法设置为synchronized的。
- 将文件或目录拷贝到另一个Linux系统的命令scp
bijian1013
linuxunixscp
一.功能说明 scp就是security copy,用于将文件或者目录从一个Linux系统拷贝到另一个Linux系统下。scp传输数据用的是SSH协议,保证了数据传输的安全,其格式如下: scp 远程用户名@IP地址:文件的绝对路径
- 【持久化框架MyBatis3五】MyBatis3一对多关联查询
bit1129
Mybatis3
以教员和课程为例介绍一对多关联关系,在这里认为一个教员可以叫多门课程,而一门课程只有1个教员教,这种关系在实际中不太常见,通过教员和课程是多对多的关系。
示例数据:
地址表:
CREATE TABLE ADDRESSES
(
ADDR_ID INT(11) NOT NULL AUTO_INCREMENT,
STREET VAR
- cookie状态判断引发的查找问题
bitcarter
formcgi
先说一下我们的业务背景:
1.前台将图片和文本通过form表单提交到后台,图片我们都做了base64的编码,并且前台图片进行了压缩
2.form中action是一个cgi服务
3.后台cgi服务同时供PC,H5,APP
4.后台cgi中调用公共的cookie状态判断方法(公共的,大家都用,几年了没有问题)
问题:(折腾两天。。。。)
1.PC端cgi服务正常调用,cookie判断没
- 通过Nginx,Tomcat访问日志(access log)记录请求耗时
ronin47
一、Nginx通过$upstream_response_time $request_time统计请求和后台服务响应时间
nginx.conf使用配置方式:
log_format main '$remote_addr - $remote_user [$time_local] "$request" ''$status $body_bytes_sent "$http_r
- java-67- n个骰子的点数。 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
bylijinnan
java
public class ProbabilityOfDice {
/**
* Q67 n个骰子的点数
* 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
* 在以下求解过程中,我们把骰子看作是有序的。
* 例如当n=2时,我们认为(1,2)和(2,1)是两种不同的情况
*/
private stati
- 看别人的博客,觉得心情很好
Cb123456
博客心情
以为写博客,就是总结,就和日记一样吧,同时也在督促自己。今天看了好长时间博客:
职业规划:
http://www.iteye.com/blogs/subjects/zhiyeguihua
android学习:
1.http://byandby.i
- [JWFD开源工作流]尝试用原生代码引擎实现循环反馈拓扑分析
comsci
工作流
我们已经不满足于仅仅跳跃一次,通过对引擎的升级,今天我测试了一下循环反馈模式,大概跑了200圈,引擎报一个溢出错误
在一个流程图的结束节点中嵌入一段方程,每次引擎运行到这个节点的时候,通过实时编译器GM模块,计算这个方程,计算结果与预设值进行比较,符合条件则跳跃到开始节点,继续新一轮拓扑分析,直到遇到
- JS常用的事件及方法
cwqcwqmax9
js
事件 描述
onactivate 当对象设置为活动元素时触发。
onafterupdate 当成功更新数据源对象中的关联对象后在数据绑定对象上触发。
onbeforeactivate 对象要被设置为当前元素前立即触发。
onbeforecut 当选中区从文档中删除之前在源对象触发。
onbeforedeactivate 在 activeElement 从当前对象变为父文档其它对象之前立即
- 正则表达式验证日期格式
dashuaifu
正则表达式IT其它java其它
正则表达式验证日期格式
function isDate(d){
var v = d.match(/^(\d{4})-(\d{1,2})-(\d{1,2})$/i);
if(!v) {
this.focus();
return false;
}
}
<input value="2000-8-8" onblu
- Yii CModel.rules() 方法 、validate预定义完整列表、以及说说验证
dcj3sjt126com
yii
public array rules () {return} array 要调用 validate() 时应用的有效性规则。 返回属性的有效性规则。声明验证规则,应重写此方法。 每个规则是数组具有以下结构:array('attribute list', 'validator name', 'on'=>'scenario name', ...validation
- UITextAttributeTextColor = deprecated in iOS 7.0
dcj3sjt126com
ios
In this lesson we used the key "UITextAttributeTextColor" to change the color of the UINavigationBar appearance to white. This prompts a warning "first deprecated in iOS 7.0."
Ins
- 判断一个数是质数的几种方法
EmmaZhao
Mathpython
质数也叫素数,是只能被1和它本身整除的正整数,最小的质数是2,目前发现的最大的质数是p=2^57885161-1【注1】。
判断一个数是质数的最简单的方法如下:
def isPrime1(n):
for i in range(2, n):
if n % i == 0:
return False
return True
但是在上面的方法中有一些冗余的计算,所以
- SpringSecurity工作原理小解读
坏我一锅粥
SpringSecurity
SecurityContextPersistenceFilter
ConcurrentSessionFilter
WebAsyncManagerIntegrationFilter
HeaderWriterFilter
CsrfFilter
LogoutFilter
Use
- JS实现自适应宽度的Tag切换
ini
JavaScripthtmlWebcsshtml5
效果体验:http://hovertree.com/texiao/js/3.htm
该效果使用纯JavaScript代码,实现TAB页切换效果,TAB标签根据内容自适应宽度,点击TAB标签切换内容页。
HTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
- Hbase Rest API : 数据查询
kane_xie
RESThbase
hbase(hadoop)是用java编写的,有些语言(例如python)能够对它提供良好的支持,但也有很多语言使用起来并不是那么方便,比如c#只能通过thrift访问。Rest就能很好的解决这个问题。Hbase的org.apache.hadoop.hbase.rest包提供了rest接口,它内嵌了jetty作为servlet容器。
启动命令:./bin/hbase rest s
- JQuery实现鼠标拖动元素移动位置(源码+注释)
明子健
jqueryjs源码拖动鼠标
欢迎讨论指正!
print.html代码:
<!DOCTYPE html>
<html>
<head>
<meta http-equiv=Content-Type content="text/html;charset=utf-8">
<title>发票打印</title>
&l
- Postgresql 连表更新字段语法 update
qifeifei
PostgreSQL
下面这段sql本来目的是想更新条件下的数据,可是这段sql却更新了整个表的数据。sql如下:
UPDATE tops_visa.visa_order
SET op_audit_abort_pass_date = now()
FROM
tops_visa.visa_order as t1
INNER JOIN tops_visa.visa_visitor as t2
ON t1.
- 将redis,memcache结合使用的方案?
tcrct
rediscache
公司架构上使用了阿里云的服务,由于阿里的kvstore收费相当高,打算自建,自建后就需要自己维护,所以就有了一个想法,针对kvstore(redis)及ocs(memcache)的特点,想自己开发一个cache层,将需要用到list,set,map等redis方法的继续使用redis来完成,将整条记录放在memcache下,即findbyid,save等时就memcache,其它就对应使用redi
- 开发中遇到的诡异的bug
wudixiaotie
bug
今天我们服务器组遇到个问题:
我们的服务是从Kafka里面取出数据,然后把offset存储到ssdb中,每个topic和partition都对应ssdb中不同的key,服务启动之后,每次kafka数据更新我们这边收到消息,然后存储之后就发现ssdb的值偶尔是-2,这就奇怪了,最开始我们是在代码中打印存储的日志,发现没什么问题,后来去查看ssdb的日志,才发现里面每次set的时候都会对同一个key