Java异常处理代码编写
java中的异常
在计算机程序运行的过程中,总是会出现各种各样的错误。
有一些错误是用户造成的,比如,希望用户输入一个int
类型的年龄,但是用户的输入是abc
:
// 假设用户输入了abc:
String s = "abc";
int n = Integer.parseInt(s); // NumberFormatException!
程序想要读写某个文件的内容,但是用户已经把它删除了:
// 用户删除了该文件:
String t = readFile("C:\\abc.txt"); // FileNotFoundException!
还有一些错误是随机出现,并且永远不可能避免的。比如:
所以,一个健壮的程序必须处理各种各样的错误。
所谓错误,就是程序调用某个函数的时候,如果失败了,就表示出错。
调用方如何获知调用失败的信息?有两种方法:
方法一:约定返回错误码。
例如,处理一个文件,如果返回0
,表示成功,返回其他整数,表示约定的错误码:
int code = processFile("C:\\test.txt");
if (code == 0) {
// ok:
} else {
// error:
switch (code) {
case 1:
// file not found:
case 2:
// no read permission:
default:
// unknown error:
}
}
因为使用int
类型的错误码,想要处理就非常麻烦。这种方式常见于底层C函数。
方法二:在语言层面上提供一个异常处理机制。
Java内置了一套异常处理机制,总是使用异常来表示错误。
异常是一种class
,因此它本身带有类型信息。异常可以在任何地方抛出,但只需要在上层捕获,这样就和方法调用分离了:
try {
String s = processFile(“C:\\test.txt”);
// ok:
} catch (FileNotFoundException e) {
// file not found:
} catch (SecurityException e) {
// no read permission:
} catch (IOException e) {
// io error:
} catch (Exception e) {
// other error:
}
因为Java的异常是class
,它的继承关系如下:
┌───────────┐
│ Object │
└───────────┘
▲
│
┌───────────┐
│ Throwable │
└───────────┘
▲
┌─────────┴─────────┐
│ │
┌───────────┐ ┌───────────┐
│ Error │ │ Exception │
└───────────┘ └───────────┘
▲ ▲
┌───────┘ ┌────┴──────────┐
│ │ │
┌─────────────────┐ ┌─────────────────┐┌───────────┐
│OutOfMemoryError │... │RuntimeException ││IOException│...
└─────────────────┘ └─────────────────┘└───────────┘
▲
┌───────────┴─────────────┐
│ │
┌─────────────────────┐ ┌─────────────────────────┐
│NullPointerException │ │IllegalArgumentException │...
└─────────────────────┘ └─────────────────────────┘
从继承关系可知:Throwable
是异常体系的根,它继承自Object
。Throwable
有两个体系:Error
和Exception
,Error
表示严重的错误,程序对此一般无能为力,例如:
OutOfMemoryError
:内存耗尽NoClassDefFoundError
:无法加载某个ClassStackOverflowError
:栈溢出而Exception
则是运行时的错误,它可以被捕获并处理。
某些异常是应用程序逻辑处理的一部分,应该捕获并处理。例如:
NumberFormatException
:数值类型的格式错误FileNotFoundException
:未找到文件SocketException
:读取网络失败还有一些异常是程序逻辑编写不对造成的,应该修复程序本身。例如:
NullPointerException
:对某个null
的对象调用方法或字段IndexOutOfBoundsException
:数组索引越界Exception
又分为两大类:
RuntimeException
以及它的子类;RuntimeException
(包括IOException
、ReflectiveOperationException
等等)Java规定:
必须捕获的异常,包括Exception
及其子类,但不包括RuntimeException
及其子类,这种类型的异常称为Checked Exception。
不需要捕获的异常,包括Error
及其子类,RuntimeException
及其子类。
捕获异常
捕获异常使用try...catch
语句,把可能发生异常的代码放到try {...}
中,然后使用catch
捕获对应的Exception
及其子类:
// try...catch
import java.io.UnsupportedEncodingException;
import java.util.Arrays;
public class Main {
public static void main(String[] args) {
byte[] bs = toGBK("中文");
System.out.println(Arrays.toString(bs));
}
static byte[] toGBK(String s) {
try {
// 用指定编码转换String为byte[]:
return s.getBytes("GBK");
} catch (UnsupportedEncodingException e) {
// 如果系统不支持GBK编码,会捕获到UnsupportedEncodingException:
System.out.println(e); // 打印异常信息
return s.getBytes(); // 尝试使用用默认编码
}
}
}
如果我们不捕获UnsupportedEncodingException
,会出现编译失败的问题:
编译器会报错,错误信息类似:unreported exception UnsupportedEncodingException; must be caught or declared to be thrown,并且准确地指出需要捕获的语句是return s.getBytes("GBK");
。意思是说,像UnsupportedEncodingException
这样的Checked Exception,必须被捕获。
这是因为String.getBytes(String)
方法定义是:
public byte[] getBytes(String charsetName) throws UnsupportedEncodingException {
...
}
在方法定义的时候,使用throws Xxx
表示该方法可能抛出的异常类型。调用方在调用的时候,必须强制捕获这些异常,否则编译器会报错。
在toGBK()
方法中,因为调用了String.getBytes(String)
方法,就必须捕获UnsupportedEncodingException
。我们也可以不捕获它,而是在方法定义处用throws表示toGBK()
方法可能会抛出UnsupportedEncodingException
,就可以让toGBK()
方法通过编译器检查:
// try...catch
import java.io.UnsupportedEncodingException;
import java.util.Arrays;
public class Main {
public static void main(String[] args) {
byte[] bs = toGBK("中文");
System.out.println(Arrays.toString(bs));
}
static byte[] toGBK(String s) throws UnsupportedEncodingException {
return s.getBytes("GBK");
}
}
上述代码仍然会得到编译错误,但这一次,编译器提示的不是调用return s.getBytes("GBK");
的问题,而是byte[] bs = toGBK("中文");
。因为在main()
方法中,调用toGBK()
,没有捕获它声明的可能抛出的UnsupportedEncodingException
。
修复方法是在main()
方法中捕获异常并处理:
// try...catch
import java.io.UnsupportedEncodingException;
import java.util.Arrays;
public class Main {
public static void main(String[] args) {
try {
byte[] bs = toGBK("中文");
System.out.println(Arrays.toString(bs));
} catch (UnsupportedEncodingException e) {
System.out.println(e);
}
}
static byte[] toGBK(String s) throws UnsupportedEncodingException {
// 用指定编码转换String为byte[]:
return s.getBytes("GBK");
}
}
可见,只要是方法声明的Checked Exception,不在调用层捕获,也必须在更高的调用层捕获。所有未捕获的异常,最终也必须在main()
方法中捕获,不会出现漏写try
的情况。这是由编译器保证的。main()
方法也是最后捕获Exception
的机会。
如果是测试代码,上面的写法就略显麻烦。如果不想写任何try
代码,可以直接把main()
方法定义为throws Exception
:
public class Main {
public static void main(String[] args) throws Exception {
byte[] bs = toGBK("中文");
System.out.println(Arrays.toString(bs));
}
static byte[] toGBK(String s) throws UnsupportedEncodingException {
// 用指定编码转换String为byte[]:
return s.getBytes("GBK");
}
}
因为main()
方法声明了可能抛出Exception
,也就声明了可能抛出所有的Exception
,因此在内部就无需捕获了。代价就是一旦发生异常,程序会立刻退出。
还有一些童鞋喜欢在toGBK()
内部“消化”异常:
static byte[] toGBK(String s) {
try {
return s.getBytes("GBK");
} catch (UnsupportedEncodingException e) {
// 什么也不干
}
return null;
这种捕获后不处理的方式是非常不好的,即使真的什么也做不了,也要先把异常记录下来:
static byte[] toGBK(String s) {
try {
return s.getBytes("GBK");
} catch (UnsupportedEncodingException e) {
// 先记下来再说:
e.printStackTrace();
}
return null;
所有异常都可以调用printStackTrace()
方法打印异常栈,这是一个简单有用的快速打印异常的方法。
Java使用异常来表示错误,并通过try ... catch
捕获异常;
Java的异常是class
,并且从Throwable
继承;
Error
是无需捕获的严重错误,Exception
是应该捕获的可处理的错误;
RuntimeException
无需强制捕获,非RuntimeException
(Checked Exception)需强制捕获,或者用throws
声明;
捕获异常
在Java中,凡是可能抛出异常的语句,都可以用try ... catch
捕获。把可能发生异常的语句放在try { ... }
中,然后使用catch
捕获对应的Exception
及其子类。
多catch语句
可以使用多个catch
语句,每个catch
分别捕获对应的Exception
及其子类。JVM在捕获到异常后,会从上到下匹配catch
语句,匹配到某个catch
后,执行catch
代码块,然后不再继续匹配。
简单地说就是:多个catch
语句只有一个能被执行。例如:
public static void main(String[] args) {
try {
process1();
process2();
process3();
} catch (IOException e) {
System.out.println(e);
} catch (NumberFormatException e) {
System.out.println(e);
}
}
存在多个catch
的时候,catch
的顺序非常重要:子类必须写在前面。例如:
public static void main(String[] args) {
try {
process1();
process2();
process3();
} catch (IOException e) {
System.out.println("IO error");
} catch (UnsupportedEncodingException e) { // 永远捕获不到
System.out.println("Bad encoding");
}
}
对于上面的代码,UnsupportedEncodingException
异常是永远捕获不到的,因为它是IOException
的子类。当抛出UnsupportedEncodingException
异常时,会被catch (IOException e) { ... }
捕获并执行。
因此,正确的写法是把子类放到前面:
public static void main(String[] args) {
try {
process1();
process2();
process3();
} catch (UnsupportedEncodingException e) {
System.out.println("Bad encoding");
} catch (IOException e) {
System.out.println("IO error");
}
}
finally语句
无论是否有异常发生,如果我们都希望执行一些语句,例如清理工作,怎么写?
可以把执行语句写若干遍:正常执行的放到try
中,每个catch
再写一遍。例如:
public static void main(String[] args) {
try {
process1();
process2();
process3();
System.out.println("END");
} catch (UnsupportedEncodingException e) {
System.out.println("Bad encoding");
System.out.println("END");
} catch (IOException e) {
System.out.println("IO error");
System.out.println("END");
}
}
上述代码无论是否发生异常,都会执行System.out.println("END");
这条语句。
那么如何消除这些重复的代码?Java的try ... catch
机制还提供了finally
语句,finally
语句块保证有无错误都会执行。上述代码可以改写如下:
public static void main(String[] args) {
try {
process1();
process2();
process3();
} catch (UnsupportedEncodingException e) {
System.out.println("Bad encoding");
} catch (IOException e) {
System.out.println("IO error");
} finally {
System.out.println("END");
}
}
注意finally
有几个特点:
finally
语句不是必须的,可写可不写;finally
总是最后执行。如果没有发生异常,就正常执行try { ... }
语句块,然后执行finally
。如果发生了异常,就中断执行try { ... }
语句块,然后跳转执行匹配的catch
语句块,最后执行finally
。
可见,finally
是用来保证一些代码必须执行的。
某些情况下,可以没有catch
,只使用try ... finally
结构。例如:
void process(String file) throws IOException {
try {
...
} finally {
System.out.println("END");
}
}
因为方法声明了可能抛出的异常,所以可以不写catch
。
捕获多种异常
如果某些异常的处理逻辑相同,但是异常本身不存在继承关系,那么就得编写多条catch
子句:
public static void main(String[] args) {
try {
process1();
process2();
process3();
} catch (IOException e) {
System.out.println("Bad input");
} catch (NumberFormatException e) {
System.out.println("Bad input");
} catch (Exception e) {
System.out.println("Unknown error");
}
}
因为处理IOException
和NumberFormatException
的代码是相同的,所以我们可以把它两用|
合并到一起:
public static void main(String[] args) {
try {
process1();
process2();
process3();
} catch (IOException | NumberFormatException e) { // IOException或NumberFormatException
System.out.println("Bad input");
} catch (Exception e) {
System.out.println("Unknown error");
}
}
使用try ... catch ... finally
时:
多个catch
语句的匹配顺序非常重要,子类必须放在前面;
finally
语句保证了有无异常都会执行,它是可选的;
一个catch
语句也可以匹配多个非继承关系的异常。
抛出异常
异常的传播
当某个方法抛出了异常时,如果当前方法没有捕获异常,异常就会被抛到上层调用方法,直到遇到某个try ... catch
被捕获为止:
public class Main {
public static void main(String[] args) {
try {
process1();
} catch (Exception e) {
e.printStackTrace();
}
}
static void process1() {
process2();
}
static void process2() {
Integer.parseInt(null); // 会抛出NumberFormatException
}
}
通过printStackTrace()
可以打印出方法的调用栈,类似:
java.lang.NumberFormatException: null
at java.base/java.lang.Integer.parseInt(Integer.java:614)
at java.base/java.lang.Integer.parseInt(Integer.java:770)
at Main.process2(Main.java:16)
at Main.process1(Main.java:12)
at Main.main(Main.java:5)
printStackTrace()
对于调试错误非常有用,上述信息表示:NumberFormatException
是在java.lang.Integer.parseInt
方法中被抛出的,调用层次从上到下依次是:
main()
调用process1()
;process1()
调用process2()
;process2()
调用Integer.parseInt(String)
;Integer.parseInt(String)
调用Integer.parseInt(String, int)
。查看Integer.java
源码可知,抛出异常的方法代码如下:
public static int parseInt(String s, int radix) throws NumberFormatException {
if (s == null) {
throw new NumberFormatException("null");
}
...
}
并且,每层调用均给出了源代码的行号,可直接定位。
抛出异常
当发生错误时,例如,用户输入了非法的字符,我们就可以抛出异常。
如何抛出异常?参考Integer.parseInt()
方法,抛出异常分两步:
Exception
的实例;throw
语句抛出。下面是一个例子:
void process2(String s) {
if (s==null) {
NullPointerException e = new NullPointerException();
throw e;
}
}
实际上,绝大部分抛出异常的代码都会合并写成一行:
void process2(String s) {
if (s==null) {
throw new NullPointerException();
}
}
如果一个方法捕获了某个异常后,又在catch
子句中抛出新的异常,就相当于把抛出的异常类型“转换”了:
void process1(String s) {
try {
process2();
} catch (NullPointerException e) {
throw new IllegalArgumentException();
}
}
void process2(String s) {
if (s==null) {
throw new NullPointerException();
}
}
当process2()
抛出NullPointerException
后,被process1()
捕获,然后抛出IllegalArgumentException()
。
如果在main()
中捕获IllegalArgumentException
,我们看看打印的异常栈:
public class Main {
public static void main(String[] args) {
try {
process1();
} catch (Exception e) {
e.printStackTrace();
}
}
static void process1() {
try {
process2();
} catch (NullPointerException e) {
throw new IllegalArgumentException();
}
}
static void process2() {
throw new NullPointerException();
}
}
打印出的异常栈类似:
java.lang.IllegalArgumentException
at Main.process1(Main.java:15)
at Main.main(Main.java:5)
这说明新的异常丢失了原始异常信息,我们已经看不到原始异常NullPointerException
的信息了。
为了能追踪到完整的异常栈,在构造异常的时候,把原始的Exception
实例传进去,新的Exception
就可以持有原始Exception
信息。对上述代码改进如下:
public class Main {
public static void main(String[] args) {
try {
process1();
} catch (Exception e) {
e.printStackTrace();
}
}
static void process1() {
try {
process2();
} catch (NullPointerException e) {
throw new IllegalArgumentException(e);
}
}
static void process2() {
throw new NullPointerException();
}
}
运行上述代码,打印出的异常栈类似:
java.lang.IllegalArgumentException: java.lang.NullPointerException
at Main.process1(Main.java:15)
at Main.main(Main.java:5)
Caused by: java.lang.NullPointerException
at Main.process2(Main.java:20)
at Main.process1(Main.java:13)
注意到Caused by: Xxx
,说明捕获的IllegalArgumentException
并不是造成问题的根源,根源在于NullPointerException
,是在Main.process2()
方法抛出的。
在代码中获取原始异常可以使用Throwable.getCause()
方法。如果返回null
,说明已经是“根异常”了。
有了完整的异常栈的信息,我们才能快速定位并修复代码的问题。
如果我们在try
或者catch
语句块中抛出异常,finally
语句是否会执行?例如:
public class Main {
public static void main(String[] args) {
try {
Integer.parseInt("abc");
} catch (Exception e) {
System.out.println("catched");
throw new RuntimeException(e);
} finally {
System.out.println("finally");
}
}
}
上述代码执行结果如下:
catched
finally
Exception in thread "main" java.lang.RuntimeException: java.lang.NumberFormatException: For input string: "abc"
at Main.main(Main.java:8)
Caused by: java.lang.NumberFormatException: For input string: "abc"
at ...
第一行打印了catched
,说明进入了catch
语句块。第二行打印了finally
,说明执行了finally
语句块。
因此,在catch
中抛出异常,不会影响finally
的执行。JVM会先执行finally
,然后抛出异常。
异常屏蔽
如果在执行finally
语句时抛出异常,那么,catch
语句的异常还能否继续抛出?例如:
public class Main {
public static void main(String[] args) {
try {
Integer.parseInt("abc");
} catch (Exception e) {
System.out.println("catched");
throw new RuntimeException(e);
} finally {
System.out.println("finally");
throw new IllegalArgumentException();
}
}
}
执行上述代码,发现异常信息如下:
catched
finally
Exception in thread "main" java.lang.IllegalArgumentException
at Main.main(Main.java:11)
这说明finally
抛出异常后,原来在catch
中准备抛出的异常就“消失”了,因为只能抛出一个异常。没有被抛出的异常称为“被屏蔽”的异常(Suppressed Exception)。
在极少数的情况下,我们需要获知所有的异常。如何保存所有的异常信息?方法是先用origin
变量保存原始异常,然后调用Throwable.addSuppressed()
,把原始异常添加进来,最后在finally
抛出:
public class Main {
public static void main(String[] args) throws Exception {
Exception origin = null;
try {
System.out.println(Integer.parseInt("abc"));
} catch (Exception e) {
origin = e;
throw e;
} finally {
Exception e = new IllegalArgumentException();
if (origin != null) {
e.addSuppressed(origin);
}
throw e;
}
}
}
当catch
和finally
都抛出了异常时,虽然catch
的异常被屏蔽了,但是,finally
抛出的异常仍然包含了它:
Exception in thread "main" java.lang.IllegalArgumentException
at Main.main(Main.java:11)
Suppressed: java.lang.NumberFormatException: For input string: "abc"
at java.base/java.lang.NumberFormatException.forInputString(NumberFormatException.java:65)
at java.base/java.lang.Integer.parseInt(Integer.java:652)
at java.base/java.lang.Integer.parseInt(Integer.java:770)
at Main.main(Main.java:6)
通过Throwable.getSuppressed()
可以获取所有的Suppressed Exception
。
绝大多数情况下,在finally
中不要抛出异常。因此,我们通常不需要关心Suppressed Exception
。
调用printStackTrace()
可以打印异常的传播栈,对于调试非常有用;
捕获异常并再次抛出新的异常时,应该持有原始异常信息;
通常不要在finally
中抛出异常。如果在finally
中抛出异常,应该原始异常加入到原有异常中。调用方可通过Throwable.getSuppressed()
获取所有添加的Suppressed Exception
。
自定义异常
Java标准库定义的常用异常包括:
Exception
│
├─ RuntimeException
│ │
│ ├─ NullPointerException
│ │
│ ├─ IndexOutOfBoundsException
│ │
│ ├─ SecurityException
│ │
│ └─ IllegalArgumentException
│ │
│ └─ NumberFormatException
│
├─ IOException
│ │
│ ├─ UnsupportedCharsetException
│ │
│ ├─ FileNotFoundException
│ │
│ └─ SocketException
│
├─ ParseException
│
├─ GeneralSecurityException
│
├─ SQLException
│
└─ TimeoutException
当我们在代码中需要抛出异常时,尽量使用JDK已定义的异常类型。例如,参数检查不合法,应该抛出IllegalArgumentException
:
static void process1(int age) {
if (age <= 0) {
throw new IllegalArgumentException();
}
}
在一个大型项目中,可以自定义新的异常类型,但是,保持一个合理的异常继承体系是非常重要的。
一个常见的做法是自定义一个BaseException
作为“根异常”,然后,派生出各种业务类型的异常。
BaseException
需要从一个适合的Exception
派生,通常建议从RuntimeException
派生:
public class BaseException extends RuntimeException {
}
其他业务类型的异常就可以从BaseException
派生:
public class UserNotFoundException extends BaseException {
}
public class LoginFailedException extends BaseException {
}
...
自定义的BaseException
应该提供多个构造方法:
public class BaseException extends RuntimeException {
public BaseException() {
super();
}
public BaseException(String message, Throwable cause) {
super(message, cause);
}
public BaseException(String message) {
super(message);
}
public BaseException(Throwable cause) {
super(cause);
}
}
上述构造方法实际上都是原样照抄RuntimeException
。这样,抛出异常的时候,就可以选择合适的构造方法。通过IDE可以根据父类快速生成子类的构造方法。
抛出异常时,尽量复用JDK已定义的异常类型;
自定义异常体系时,推荐从RuntimeException
派生“根异常”,再派生出业务异常;
自定义异常时,应该提供多种构造方法。
断言
断言(Assertion)是一种调试程序的方式。在Java中,使用assert
关键字来实现断言。
我们先看一个例子:
public static void main(String[] args) {
double x = Math.abs(-123.45);
assert x >= 0;
System.out.println(x);
}
语句assert x >= 0;
即为断言,断言条件x >= 0
预期为true
。如果计算结果为false
,则断言失败,抛出AssertionError
。
使用assert
语句时,还可以添加一个可选的断言消息:
assert x >= 0 : "x must >= 0";
这样,断言失败的时候,AssertionError
会带上消息x must >= 0
,更加便于调试。
Java断言的特点是:断言失败时会抛出AssertionError
,导致程序结束退出。因此,断言不能用于可恢复的程序错误,只应该用于开发和测试阶段。
对于可恢复的程序错误,不应该使用断言。例如:
void sort(int[] arr) {
assert arr != null;
}
应该抛出异常并在上层捕获:
void sort(int[] arr) {
if (x == null) {
throw new IllegalArgumentException("array cannot be null");
}
}
当我们在程序中使用assert
时,例如,一个简单的断言:
public class Main {
public static void main(String[] args) {
int x = -1;
assert x > 0;
System.out.println(x);
}
}
断言x
必须大于0
,实际上x
为-1
,断言肯定失败。执行上述代码,发现程序并未抛出AssertionError
,而是正常打印了x
的值。
这是怎么肥四?为什么assert
语句不起作用?
这是因为JVM默认关闭断言指令,即遇到assert
语句就自动忽略了,不执行。
要执行assert
语句,必须给Java虚拟机传递-enableassertions
(可简写为-ea
)参数启用断言。所以,上述程序必须在命令行下运行才有效果:
$ java -ea Main.java
Exception in thread "main" java.lang.AssertionError
at Main.main(Main.java:5)
还可以有选择地对特定地类启用断言,命令行参数是:-ea:com.itranswarp.sample.Main
,表示只对com.itranswarp.sample.Main
这个类启用断言。
或者对特定地包启用断言,命令行参数是:-ea:com.itranswarp.sample...
(注意结尾有3个.
),表示对com.itranswarp.sample
这个包启动断言。
实际开发中,很少使用断言。更好的方法是编写单元测试,后续我们会讲解JUnit
的使用。
断言是一种调试方式,断言失败会抛出AssertionError
,只能在开发和测试阶段启用断言;
对可恢复的错误不能使用断言,而应该抛出异常;
断言很少被使用,更好的方法是编写单元测试。
JDK Logging
在编写程序的过程中,发现程序运行结果与预期不符,怎么办?当然是用System.out.println()
打印出执行过程中的某些变量,观察每一步的结果与代码逻辑是否符合,然后有针对性地修改代码。
代码改好了怎么办?当然是删除没有用的System.out.println()
语句了。
如果改代码又改出问题怎么办?再加上System.out.println()
。
反复这么搞几次,很快大家就发现使用System.out.println()
非常麻烦。
怎么办?
解决方法是使用日志。
那什么是日志?日志就是Logging,它的目的是为了取代System.out.println()
。
输出日志,而不是用System.out.println()
,有以下几个好处:
"ERROR: " + var
;总之就是好处很多啦。
那如何使用日志?
因为Java标准库内置了日志包java.util.logging
,我们可以直接用。先看一个简单的例子:
// logging
import java.util.logging.Level;
import java.util.logging.Logger;
public class Hello {
public static void main(String[] args) {
Logger logger = Logger.getGlobal();
logger.info("start process...");
logger.warning("memory is running out...");
logger.fine("ignored.");
logger.severe("process will be terminated...");
}
}
运行上述代码,得到类似如下的输出:
Mar 02, 2019 6:32:13 PM Hello main
INFO: start process...
Mar 02, 2019 6:32:13 PM Hello main
WARNING: memory is running out...
Mar 02, 2019 6:32:13 PM Hello main
SEVERE: process will be terminated...
对比可见,使用日志最大的好处是,它自动打印了时间、调用类、调用方法等很多有用的信息。
再仔细观察发现,4条日志,只打印了3条,logger.fine()
没有打印。这是因为,日志的输出可以设定级别。JDK的Logging定义了7个日志级别,从严重到普通:
因为默认级别是INFO,因此,INFO级别以下的日志,不会被打印出来。使用日志级别的好处在于,调整级别,就可以屏蔽掉很多调试相关的日志输出。
使用Java标准库内置的Logging有以下局限:
Logging系统在JVM启动时读取配置文件并完成初始化,一旦开始运行main()
方法,就无法修改配置;
配置不太方便,需要在JVM启动时传递参数-Djava.util.logging.config.file=
。
因此,Java标准库内置的Logging使用并不是非常广泛。更方便的日志系统我们稍后介绍。
使用logger.severe()打印异常:
Logger logger = Logger.getLogger(Main.class.getName());
logger.info("Start process...");
try {
"".getBytes("invalidCharsetName");
} catch (UnsupportedEncodingException e) {
// TODO: 使用logger.severe()打印异常
}
logger.info("Process end.");
日志是为了替代System.out.println()
,可以定义格式,重定向到文件等;
日志可以存档,便于追踪问题;
日志记录可以按级别分类,便于打开或关闭某些级别;
可以根据配置文件调整日志,无需修改代码;
Java标准库提供了java.util.logging
来实现日志功能。
Commons Logging
和Java标准库提供的日志不同,Commons Logging是一个第三方日志库,它是由Apache创建的日志模块。
Commons Logging的特色是,它可以挂接不同的日志系统,并通过配置文件指定挂接的日志系统。默认情况下,Commons Loggin自动搜索并使用Log4j(Log4j是另一个流行的日志系统),如果没有找到Log4j,再使用JDK Logging。
使用Commons Logging只需要和两个类打交道,并且只有两步:
第一步,通过LogFactory
获取Log
类的实例; 第二步,使用Log
实例的方法打日志。
示例代码如下:
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
public class Main {
public static void main(String[] args) {
Log log = LogFactory.getLog(Main.class);
log.info("start...");
log.warn("end.");
}
}
运行上述代码,肯定会得到编译错误,类似error: package org.apache.commons.logging does not exist
(找不到org.apache.commons.logging
这个包)。因为Commons Logging是一个第三方提供的库,所以,必须先把它下载下来。下载后,解压,找到commons-logging-1.2.jar
这个文件,再把Java源码Main.java
放到一个目录下,例如work
目录:
work
│
├─ commons-logging-1.2.jar
│
└─ Main.java
然后用javac
编译Main.java
,编译的时候要指定classpath
,不然编译器找不到我们引用的org.apache.commons.logging
包。编译命令如下:
javac -cp commons-logging-1.2.jar Main.java
如果编译成功,那么当前目录下就会多出一个Main.class
文件:
work
│
├─ commons-logging-1.2.jar
│
├─ Main.java
│
└─ Main.class
现在可以执行这个Main.class
,使用java
命令,也必须指定classpath
,命令如下:
java -cp .;commons-logging-1.2.jar Main
注意到传入的classpath
有两部分:一个是.
,一个是commons-logging-1.2.jar
,用;
分割。.
表示当前目录,如果没有这个.
,JVM不会在当前目录搜索Main.class
,就会报错。
如果在Linux或macOS下运行,注意classpath
的分隔符不是;
,而是:
:
java -cp .:commons-logging-1.2.jar Main
运行结果如下:
Mar 02, 2019 7:15:31 PM Main main
INFO: start...
Mar 02, 2019 7:15:31 PM Main main
WARNING: end.
Commons Logging定义了6个日志级别:
默认级别是INFO
。
使用Commons Logging时,如果在静态方法中引用Log
,通常直接定义一个静态类型变量:
// 在静态方法中引用Log:
public class Main {
static final Log log = LogFactory.getLog(Main.class);
static void foo() {
log.info("foo");
}
}
在实例方法中引用Log
,通常定义一个实例变量:
// 在实例方法中引用Log:
public class Person {
protected final Log log = LogFactory.getLog(getClass());
void foo() {
log.info("foo");
}
}
注意到实例变量log的获取方式是LogFactory.getLog(getClass())
,虽然也可以用LogFactory.getLog(Person.class)
,但是前一种方式有个非常大的好处,就是子类可以直接使用该log
实例。例如:
// 在子类中使用父类实例化的log:
public class Student extends Person {
void bar() {
log.info("bar");
}
}
由于Java类的动态特性,子类获取的log
字段实际上相当于LogFactory.getLog(Student.class)
,但却是从父类继承而来,并且无需改动代码。
此外,Commons Logging的日志方法,例如info()
,除了标准的info(String)
外,还提供了一个非常有用的重载方法:info(String, Throwable)
,这使得记录异常更加简单:
try {
...
} catch (Exception e) {
log.error("got exception!", e);
}
Commons Logging是使用最广泛的日志模块;
Commons Logging的API非常简单;
Commons Logging可以自动检测并使用其他日志模块。
Log4j
前面介绍了Commons Logging,可以作为“日志接口”来使用。而真正的“日志实现”可以使用Log4j。
Log4j是一种非常流行的日志框架,最新版本是2.x。
Log4j是一个组件化设计的日志系统,它的架构大致如下:
log.info("User signed in.");
│
│ ┌──────────┐ ┌──────────┐ ┌──────────┐ ┌──────────┐
├──>│ Appender │───>│ Filter │───>│ Layout │───>│ Console │
│ └──────────┘ └──────────┘ └──────────┘ └──────────┘
│
│ ┌──────────┐ ┌──────────┐ ┌──────────┐ ┌──────────┐
├──>│ Appender │───>│ Filter │───>│ Layout │───>│ File │
│ └──────────┘ └──────────┘ └──────────┘ └──────────┘
│
│ ┌──────────┐ ┌──────────┐ ┌──────────┐ ┌──────────┐
└──>│ Appender │───>│ Filter │───>│ Layout │───>│ Socket │
└──────────┘ └──────────┘ └──────────┘ └──────────┘
当我们使用Log4j输出一条日志时,Log4j自动通过不同的Appender把同一条日志输出到不同的目的地。例如:
在输出日志的过程中,通过Filter来过滤哪些log需要被输出,哪些log不需要被输出。例如,仅输出ERROR
级别的日志。
最后,通过Layout来格式化日志信息,例如,自动添加日期、时间、方法名称等信息。
上述结构虽然复杂,但我们在实际使用的时候,并不需要关心Log4j的API,而是通过配置文件来配置它。
以XML配置为例,使用Log4j的时候,我们把一个log4j2.xml
的文件放到classpath
下就可以让Log4j读取配置文件并按照我们的配置来输出日志。下面是一个配置文件的例子:
%d{MM-dd HH:mm:ss.SSS} [%t] %-5level %logger{36}%n%msg%n%n
log/err.log
log/err.%i.log.gz
虽然配置Log4j比较繁琐,但一旦配置完成,使用起来就非常方便。对上面的配置文件,凡是INFO
级别的日志,会自动输出到屏幕,而ERROR
级别的日志,不但会输出到屏幕,还会同时输出到文件。并且,一旦日志文件达到指定大小(1MB),Log4j就会自动切割新的日志文件,并最多保留10份。
有了配置文件还不够,因为Log4j也是一个第三方库,我们需要从这里下载Log4j,解压后,把以下3个jar包放到classpath
中:
因为Commons Logging会自动发现并使用Log4j,所以,把上一节下载的commons-logging-1.2.jar
也放到classpath
中。
要打印日志,只需要按Commons Logging的写法写,不需要改动任何代码,就可以得到Log4j的日志输出,类似:
03-03 12:09:45.880 [main] INFO com.itranswarp.learnjava.Main
Start process...
最佳实践
在开发阶段,始终使用Commons Logging接口来写入日志,并且开发阶段无需引入Log4j。如果需要把日志写入文件, 只需要把正确的配置文件和Log4j相关的jar包放入classpath
,就可以自动把日志切换成使用Log4j写入,无需修改任何代码。
通过Commons Logging实现日志,不需要修改代码即可使用Log4j 使用Log4j只需要把log4j2.xml和相关jar放入classpath 如果要更换Log4j,只需要移除log4j2.xml和相关jar 只有扩展Log4j时,才需要引用Log4j的接口(例如,将日志加密写入数据库的功能,需要自己开发)
SLF4J和Logback
前面介绍了Commons Logging和Log4j这一对好基友,它们一个负责充当日志API,一个负责实现日志底层,搭配使用非常便于开发。
有的童鞋可能还听说过SLF4J和Logback。这两个东东看上去也像日志,它们又是啥?
其实SLF4J类似于Commons Logging,也是一个日志接口,而Logback类似于Log4j,是一个日志的实现。
为什么有了Commons Logging和Log4j,又会蹦出来SLF4J和Logback?
这是因为Java有着非常悠久的开源历史,不但OpenJDK本身是开源的,而且我们用到的第三方库,几乎全部都是开源的。
开源生态丰富的一个特定就是,同一个功能,可以找到若干种互相竞争的开源库。
因为对Commons Logging的接口不满意,有人就搞了SLF4J。因为对Log4j的性能不满意,有人就搞了Logback。
我们先来看看SLF4J对Commons Logging的接口有何改进。
在Commons Logging中,我们要打印日志,有时候得这么写:
int score = 99;
p.setScore(score);
log.info("Set score " + score + " for Person " + p.getName() + " ok.");
拼字符串是一个非常麻烦的事情,所以SLF4J的日志接口改进成这样了:
int score = 99;
p.setScore(score);
logger.info("Set score {} for Person {} ok.", score, p.getName());
我们靠猜也能猜出来,SLF4J的日志接口传入的是一个带占位符的字符串,用后面的变量自动替换占位符,所以看起来更加自然。
如何使用SLF4J?它的接口实际上和Commons Logging几乎一模一样:
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
class Main {
final Logger logger = LoggerFactory.getLogger(getClass());
}
对比一下Commons Logging和SLF4J的接口:
Commons Logging | SLF4J |
---|---|
org.apache.commons.logging.Log | org.slf4j.Logger |
org.apache.commons.logging.LogFactory | org.slf4j.LoggerFactory |
不同之处就是Log变成了Logger,LogFactory变成了LoggerFactory。
使用SLF4J和Logback和前面讲到的使用Commons Logging加Log4j是类似的,先分别下载SLF4J和Logback,然后把以下jar包放到classpath下:
然后使用SLF4J的Logger和LoggerFactory即可。和Log4j类似,我们仍然需要一个Logback的配置文件,把logback.xml
放到classpath下,配置如下:
%d{HH:mm:ss.SSS} [%thread] %-5level %logger{36} - %msg%n
%d{HH:mm:ss.SSS} [%thread] %-5level %logger{36} - %msg%n
utf-8
log/output.log
log/output.log.%i
1MB
运行即可获得类似如下的输出:
13:15:25.328 [main] INFO com.itranswarp.learnjava.Main - Start process...
从目前的趋势来看,越来越多的开源项目从Commons Logging加Log4j转向了SLF4J加Logback。
SLF4J和Logback可以取代Commons Logging和Log4j;
始终使用SLF4J的接口写入日志,使用Logback只需要配置,不需要修改代码。