大数运算模板(高精度)

大数运算模板(高精度)

之前大数的模板一直都没有系统的整理过,今天就在这里整理一下吧。加减乘都没什么说的,模拟小学运算就行,除操作基本是在“试商”,先令被除数位数与除数位数保持一致,然后利用减法试出这一位的商,然后记录余数,令余数*10+被除数下一位,成为新的“被除数片段”,重复以上操作直至耗尽被除数位数。
注:本模板仅用于大数的整数加减乘除操作,如需浮点数,需在本模板基础上略作修改(其实就是挪小数点)。

#pragma GCC optimize(3,"Ofast","inline")
#pragma G++ optimize(3)
#include
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
using namespace std;
typedef unsigned long long ll;
//typedef unsigned long long ull;
typedef pair<ll,ll> pll;
typedef pair<int,int> pii;
typedef queue<int> q_i;
typedef queue<string> q_s;
typedef queue<double> q_d;
typedef queue<ll> q_ll;
typedef queue<char> q_c;
typedef priority_queue<int> pq_i;
typedef priority_queue<string> pq_s;
typedef priority_queue<double> pq_d;
typedef priority_queue<ll> pq_ll;
typedef stack<int> s_i;
typedef stack<string> s_s;
typedef stack<double> s_d;
typedef stack<ll> s_ll;
typedef stack<char> s_c;
typedef map<ll,ll> m_ll_ll;
typedef map<int,ll> m_i_ll;
typedef map<int,int> m_i_i;
typedef map<string,ll> m_s_ll;
typedef map<char,int> m_c_i;
typedef map<char,ll> m_c_ll;
const ll INF=0x3f3f3f3f;
#define rep(i,l,r) for(int i=l;i<=r;i++)
#define per(i,l,r) for(int i=r;i>=l;i--)
#define eif else if
#define N 100005
#define mm(dp) memset(dp,0,sizeof(dp))
#define mm1(dp) memset(dp,-1,sizeof(dp))
#define mm2(dp) memset(dp,0x3f,sizeof(dp))
#define IT set::iterator
#define fs(n) fixed<< setprecision(n)
//const double e=2.71828182845;
#define max(a,b) a>b?a:b
#define min(a,b) a
const double pi = acos(-1.0);
void read(int &x)
{
    char ch=getchar();
    x=0;
    for(; ch<'0'||ch>'9'; ch=getchar());
    for(; ch>='0'&&ch<='9'; x=x*10+ch-'0',ch=getchar());
}
inline void write(ll x)
{
    if(x<0)
        putchar('-'),x=-x;
    if(x>9)
        write(x/10);
    putchar(x%10+'0');
}
float SqrtByCarmack( float number )
{
    int i;
    float x2, y;
    const float threehalfs = 1.5F;
    x2 = number * 0.5F;
    y  = number;
    i  = * ( int * ) &y;
    i  = 0x5f375a86 - ( i >> 1 );
    y  = * ( float * ) &i;
    y  = y * ( threehalfs - ( x2 * y * y ) );
    y  = y * ( threehalfs - ( x2 * y * y ) );
    y  = y * ( threehalfs - ( x2 * y * y ) );
    return number*y;
}
ll qpow(ll a,ll b,ll mod)
{
    ll sum=1;
    while(b)
    {
        if(b%2==1)
        {
            sum=sum*a%mod;
        }
        b/=2;
        a=a*a%mod;
    }
    return sum;
}
int erfen(int *a,int start,int endd,int l)//小于等于l的最大值的角标
{
    int mid=(start+endd)/2;
    if((a[mid]<=l&&a[mid+1]>l)||(mid==endd&&a[mid]<=l))
        return mid;
    else if(a[mid]<=l)
        return erfen(a,mid+1,endd,l);
    else if(a[mid]>l)
    {
        if(start!=mid)
            return erfen(a,start,mid,l);
        else
            return start-1;
    }
}
ll prime[6] = {2, 3, 5, 233, 331};
ll qmul(ll x, ll y, ll mod)
{
    return (x * y - (long long)(x / (long double)mod * y + 1e-3) *mod + mod) % mod;
}
bool Miller_Rabin(ll p)
{
    if(p < 2)
        return 0;
    if(p != 2 && p % 2 == 0)
        return 0;
    ll s = p - 1;
    while(! (s & 1))
        s >>= 1;
    for(int i = 0; i < 5; ++i)
    {
        if(p == prime[i])
            return 1;
        ll t = s, m = qpow(prime[i], s, p);
        while(t != p - 1 && m != 1 && m != p - 1)
        {
            m = qmul(m, m, p);
            t <<= 1;
        }
        if(m != p - 1 && !(t & 1))
            return 0;
    }
    return 1;
}
ll gcd(ll x,ll y)
{
    if(y==0)
        return x;
    else
        return gcd(y,x%y);
}
string add(string x,string y)//高精度加法
{
    int len1=x.size();
    int len2=y.size();
    int lenx=max(len1,len2);
    int lenn=min(len1,len2);
    reverse(x.begin(),x.end());
    reverse(y.begin(),y.end());
    string str;
    int v=0;
    for(int i=0; i<lenn; i++)
    {
        int u=(x[i]-'0')+(y[i]-'0')+v;
        if(u>=10)
        {
            v=1;
            u-=10;
        }
        else
            v=0;
        char ch=(char)(u+'0');
        str+=ch;
    }
    if(v==1)
    {
        for(int i=lenn; i<lenx; i++)
        {
            int u;
            if(len1>len2)
                u=(x[i]-'0')+v;
            else
                u=(y[i]-'0')+v;
            if(u>=10)
            {
                v=1;
                u-=10;
            }
            else
                v=0;
            str+=(char)(u+'0');
        }
    }
    else
    {
        for(int i=lenn; i<lenx; i++)
        {
            int u;
            if(len1>len2)
                u=x[i]-'0';
            else
                u=y[i]-'0';
            str+=(char)(u+'0');
        }
    }
    if(v==1)
        str+='1';
    reverse(str.begin(),str.end());
    return str;
}
string minus1(string x,string y)//高精度减法
{
    int flag=0;
    string str;
    if(x.compare(y)==0)
    {
        str="0";
        return str;
    }
    else if(x.size()<y.size()||(x.size()==y.size()&&x.compare(y)<0))
    {
        string u=x;
        x=y;
        y=u;
        flag=1;
    }
    int len1=x.size();
    int len2=y.size();
    reverse(x.begin(),x.end());
    reverse(y.begin(),y.end());
    int v=0;
    for(int i=0; i<len2; i++)
    {
        int u=(x[i]-'0')-(y[i]-'0')+v;
        if(u<0)
        {
            v=-1;
            u+=10;
        }
        else
            v=0;
        char ch=(char)(u+'0');
        str+=ch;
    }
    if(v==-1)
    {
        for(int i=len2; i<len1; i++)
        {
            int u;
            u=(x[i]-'0')+v;
            if(u<0)
            {
                v=-1;
                u+=10;
            }
            else
                v=0;
            str+=(char)(u+'0');
        }
    }
    else
    {
        for(int i=len2; i<len1; i++)
        {
            int u;
            u=x[i]-'0';
            str+=(char)(u+'0');
        }
    }
    string str1;
    int len=str.size();
    reverse(str.begin(),str.end());
    int flag1=0;
    for(int i=0; i<len; i++)
    {
        if(str[i]!='0')
        {
            flag1=i;
            break;
        }
    }
    str1=str.substr(flag1);
    reverse(str1.begin(),str1.end());
    if(flag==1)
        str1+='-';
    reverse(str1.begin(),str1.end());
    return str1;
}
string cheng(string x,string y)//高精度乘法
{
    if((x.size()<y.size())||(x.size()==y.size()&&x.compare(y)<0))
    {
        string s;
        s=x;
        x=y;
        y=s;
    }
    if(y.compare("0")==0)
    {
        string ss="0";
        return ss;
    }
    int len1=x.size();
    int len2=y.size();
    reverse(x.begin(),x.end());
    reverse(y.begin(),y.end());
    string str;
    int ans[90000];
    memset(ans,0,sizeof(ans));
    for(int i=0;i<len2;i++)
    {
        for(int j=0;j<len1;j++)
        {
            ans[i+j]+=(x[j]-'0')*(y[i]-'0');
        }
    }
    int cnt=len1+len2;
    for(int i=0;i<cnt;i++)
    {
        ans[i+1]+=(ans[i]/10);
        ans[i]=ans[i]%10;
    }
    int k=0;
    for(int i=cnt;i>=0;i--)
    {
        if(ans[i]!=0)
            k=1;
        if(ans[i]==0&&k==0)
            continue;
        char ch=(char)(ans[i]+'0');
        str+=ch;
    }
    return str;
}
typedef struct
{
    string shang,yu;
}STU;
STU chu(string a,string b)//高精度除法+取余
{
    STU stu;
    int lena=a.size();
    int lenb=b.size();
    if(minus1(b,"0")=="0")
    {
        stu.shang="error";
        stu.yu="error";
        return stu;
    }
    string str=minus1(a,b);
    if(str[0]=='-')
    {
        stu.shang="0";
        stu.yu=b;
        return stu;
    }
    int u=lena-lenb;
    string c="0";
    string ans="";
    string ss=a.substr(0,lenb);
    for(int i=0;i<=u;i++)
    {
        c+="0";
        if(i!=0)
            ss=a.substr(i+lenb-1,1);
        ss=add(ss,c);
        int k=0;
        int flag=0;
        string s1="";
        for(int j=0;j<=ss.size()-1;j++)
        {
            if(flag==0&&ss[j]!='0')
            {
                flag=1;
                s1+=ss[j];
            }
            else if(flag==1)
            {
                s1+=ss[j];
            }
        }
        ss=s1;
        ss=minus1(ss,b);
        while(ss[0]!='-')
        {
            k++;
            ss=minus1(ss,b);
        }
        if(ss[0]=='-')
        {

            ss=ss.substr(1,ss.size()-1);
            ss=minus1(b,ss);
        }
        switch(k)
        {
        case 1:
            ans+="1";
            break;
        case 2:
            ans+="2";
            break;
        case 3:
            ans+="3";
            break;
        case 4:
            ans+="4";
            break;
        case 5:
            ans+="5";
            break;
        case 6:
            ans+="6";
            break;
        case 7:
            ans+="7";
            break;
        case 8:
            ans+="8";
            break;
        case 9:
            ans+="9";
            break;
        case 0:
            ans+="0";
            break;
        default:
            break;
        }
        c=ss;
    }
    int flag=0;
    string s1="";
    for(int j=0;j<=ans.size()-1;j++)
    {
        if(flag==0&&ans[j]!='0')
        {
            flag=1;
            s1+=ans[j];
        }
        else if(flag==1)
        {
            s1+=ans[j];
        }
    }
    ans=s1;
    stu.shang=ans;
    stu.yu=c;
    return stu;
}
int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    string a;
    string b;
    cin>>a>>b;
    STU stu=chu(a,b);
    cout<<stu.shang<<" "<<stu.yu<<endl;
    return 0;
}

你可能感兴趣的:(模板,高精度)