FZU 2194 星系碰撞(二分图匹配)

题目链接:http://acm.fzu.edu.cn/problem.php?pid=2194

 

思路:对于所有点将与其距离 <= 5 的点连边,然后跑二分图匹配,最后算出最大独立集,这题数据量比较大,用的是Hopcroft-Carp算法,复杂度O(sqrt(n) * E),另外使用map时要使用内置的pair类型和find函数,否则会T。。。

 

 

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#pragma comment(linker, "/STACK:102400000,102400000")

using namespace std;

const int MAXN = 50010;
const int INF = INT_MAX - 1;

vector  G[MAXN];
int uN;
int Mx[MAXN], My[MAXN];
int dx[MAXN], dy[MAXN];
int dis;
bool used[MAXN];

struct node
{
    int x, y;
} a[MAXN];

typedef pair  P;

bool SearchP()
{
    queue  Q;
    dis = INF;
    memset(dx, -1, sizeof(dx));
    memset(dy, -1, sizeof(dy));
    for (int i = 0 ; i < uN; i++)
        if (Mx[i] == -1)
        {   Q.push(i);
            dx[i] = 0;
        }
    while (!Q.empty())
    {
        int u = Q.front();
        Q.pop();
        if (dx[u] > dis)break;
        int sz = G[u].size();
        for (int i = 0; i < sz; i++)
        {
            int v = G[u][i];
            if (dy[v] == -1)
            {
                dy[v] = dx[u] + 1;
                if (My[v] == -1)dis = dy[v];
                else
                {
                    dx[My[v]] = dy[v] + 1;
                    Q.push(My[v]);
                }
            }
        }
    }
    return dis != INF;
}

bool DFS(int u)
{
    int sz = G[u].size();
    for (int i = 0; i < sz; i++)
    {
        int v = G[u][i];
        if (!used[v] && dy[v] == dx[u] + 1)
        {
            used[v] = true;
            if (My[v] != -1 && dy[v] == dis)continue;
            if (My[v] == -1 || DFS(My[v]))
            {
                My[v] = u;
                Mx[u] = v;
                return true;
            }
        }
    }
    return false;
}

int MaxMatch()
{
    int res = 0;
    memset(Mx, -1, sizeof(Mx));
    memset(My, -1, sizeof(My));
    while (SearchP())
    {
        memset(used, false, sizeof(used));
        for (int i = 0; i < uN; i++)
            if (Mx[i] == -1 && DFS(i))
                res++;
    }
    return res;
}

map  ma;

void init(int n)
{
    ma.clear();
    for (int i = 0; i <= n; i++)
        G[i].clear();
}


int main()
{
    int n;
    while (~scanf("%d", &n))
    {
        init(n);
        for (int i = 0; i < n; i++)
        {
            scanf("%d%d", &a[i].x, &a[i].y);
            ma[P(a[i].x, a[i].y)] = i + 1;
        }
        uN = n;

        map  ::iterator it;
        for (int i = 0; i < n; i++)
        {
            for (int j = -5; j <= 5; j++)
            {
                for (int k = -5; k <= 5; k++)
                {
                    if (j * j + k * k > 25) continue;
                    if (j == 0 && k == 0) continue;
                    P nxt;
                    nxt.first = a[i].x + j, nxt.second = a[i].y + k;
                    it = ma.find(nxt);
                    if (it->second)
                        G[i].push_back(it->second - 1);
                }
            }
        }
        int res = MaxMatch() / 2;
        if (res == n)
            puts("-1");
        else
            printf("%d\n", n - res);
    }
    return 0;
}

 

 

 

 

 

你可能感兴趣的:(ACM/ICPC,图论)