Kernel I2C子系统

2019独角兽企业重金招聘Python工程师标准>>> hot3.png

    备注:所有图片来源于网络

    1,I2C协议:

        物理拓扑:

            I2C总线由两根信号线组成,一条是时钟信号线SCL,一条是数据信号线SDA。一条I2C总线可以接多个设备,每个设备都接入I2C总线的SCL和SDA。I2C总线是主从模式的总线架构,每个设备都可以作为主设备,其他设备作为从设备,但是同一时刻只能有一个主设备。其物理总线拓扑图如下(图片来源于网络):

        1219450.png

        总线协议:

            (1)起始条件(边沿触发):当SCL总线处于高电平时,SDA总线从高电平到低电平的跳变触发一次传输的开始条件。

            (2)结束条件(边沿触发):当SCL总线处于高电平时,SDA总线从低电平到高电平的跳变触发一次传输的结束条件。

            起始和结束的时序图如下:

              Kernel I2C子系统_第1张图片

            (3)数据传输格式:

                起始条件触发之后,SCL处于高电平时,检测SDA总线的高低电平值1和0,SCL处于低电平时,SDA高低电平跳变切换数据1和0。

                SDA的数据传输以8bit(一个字节)为单位,每个字节传输之后都跟随一个bit的ACK位。起始条件之后的第一个字节应该是地址字段(包含7bit的地址+1bit的R/W位),随后是8bit为单位的数据,数据可以无限制的多次发送。注意,地址字节和每个数据字节之后都跟随一个bit的ACK位。

                I2C总线的数据格式如下:

                Kernel I2C子系统_第2张图片

                I2C的传输数据时序图如下:

                Kernel I2C子系统_第3张图片

            (4)以s3c24xx I2C为例,可以工作在4中模式:主机发送模式,主机接收模式,从机发送模式,从机接收模式。Linux中主要应用主机发送和接收模式。主机发送模式如下:

                    Kernel I2C子系统_第4张图片

                主机接收模式如下:

            Kernel I2C子系统_第5张图片

    2,内核中I2C驱动框架

        Kernel中I2C总线框架分为三层:I2C总线核心层,I2C总线控制器驱动层,I2C设备驱动层。

        (1)总线核心层:这是I2C的核心框架层,定义了I2C核心的数据结构,提供了I2C控制器,I2C设备和驱动的注册/注销框架,并提供了设备数据传输接口。如下:

                控制器注册注销接口:int i2c_add_adapter(struct i2c_adapter *adapter);
                                                  void i2c_del_adapter(struct i2c_adapter *adap);

                设备驱动注册注销接口:int i2c_register_driver(struct module *owner, struct i2c_driver *driver);
                                                     void i2c_del_driver(struct i2c_driver *driver);

                数据传输接口:int i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num);

                                        int i2c_master_send(const struct i2c_client *client, const char *buf, int count);

                                        int i2c_master_recv(const struct i2c_client *client, char *buf, int count);
        (2)控制器驱动层:由 i2c_adapter 结构描述了某个具体的I2C总线控制器特性,并通过 i2c_algorithm 结构提供了I2C总线周期的开始,停止,数据发送和接收等方法。同一个i2c_algorithm可以提供给多个 i2c_adapter 使用,i2c_adapter在注册的同时,会去(通过设备树配置或者老式的platform相关的硬编码)轮询该i2c总线下的所有i2c设备,并创建对应的 i2c_client 设备。换句话说,注册一个i2c_adapter,该总线下的所有从设备都会被注册到 i2c_bus_type下。

        (3)设备驱动层:由 i2c_driver 结构表示,用于表示各个具体从设备的驱动,跟 i2c_client 绑定,通过 i2c_client 关联的 adapter的algorithm实现具体从设备的通信协议。遵循kernel设备驱动框架,注册在 i2c_bus_type 下【i2c_bus_type总线下挂 i2c_driver 和 i2c_client,注册 i2c_driver 的时候,会去轮询 i2c_bus_type 总线下的所有 i2c_client 设备,调用 bus 的 match()方法,匹配后,调用 i2c_driver 的probe()方法并关联该 i2c_client。在注册 i2c_adapter 同时,扫描注册该总线下所有的 i2c_client的时候,调用 bus 的match()方法匹配 i2c_bus_type 总线下的 i2c_driver 驱动后,在调用 i2c_driver的probe()方法并关联该 i2c_driver】。

        这三层之间的关系如下:

        02225054-2c2abb8ed8da431390a03bcbfd6563df.png

    3,I2C驱动框架源码分析

        (1)I2C设备控制器注册:int i2c_add_adapter(struct i2c_adapter *adapter);

int i2c_add_adapter(struct i2c_adapter *adapter)
{
    struct device *dev = &adapter->dev;
    int id;

    if (dev->of_node) {
        id = of_alias_get_id(dev->of_node, "i2c");   // 通过设备树配置获取 i2c 的总线编号
        if (id >= 0) {
            adapter->nr = id;
            return __i2c_add_numbered_adapter(adapter);   // 注册已编号的adapter,内部调用 i2c_register_adapter()
        }
    }

    mutex_lock(&core_lock);
    id = idr_alloc(&i2c_adapter_idr, adapter,
               __i2c_first_dynamic_bus_num, 0, GFP_KERNEL);    // 动态获取 i2c 总线编号

    mutex_unlock(&core_lock);
    if (id < 0)
        return id;

    adapter->nr = id;

    return i2c_register_adapter(adapter);  // 注册adapter
}
 

static int i2c_register_adapter(struct i2c_adapter *adap)
{
    int res = 0;

    /* Can't register until after driver model init */
    if (unlikely(WARN_ON(!i2c_bus_type.p))) {
        res = -EAGAIN;
        goto out_list;
    }

    /* Sanity checks */
    if (unlikely(adap->name[0] == '\0')) {
        pr_err("i2c-core: Attempt to register an adapter with "
               "no name!\n");
        return -EINVAL;
    }
    if (unlikely(!adap->algo)) {
        pr_err("i2c-core: Attempt to register adapter '%s' with "
               "no algo!\n", adap->name);
        return -EINVAL;
    }

    rt_mutex_init(&adap->bus_lock);
    mutex_init(&adap->userspace_clients_lock);
    INIT_LIST_HEAD(&adap->userspace_clients);

    /* Set default timeout to 1 second if not already set */
    if (adap->timeout == 0)
        adap->timeout = HZ;

    dev_set_name(&adap->dev, "i2c-%d", adap->nr);
    adap->dev.bus = &i2c_bus_type;    // adapter 注册在 i2c_bus_type 总线下
    adap->dev.type = &i2c_adapter_type;    // 设置 dev 的类型是 i2c_adapter_type 类型,用以区分其他设备类型
    res = device_register(&adap->dev);    // 注册进kernel设备框架
    if (res)
        goto out_list;

    dev_dbg(&adap->dev, "adapter [%s] registered\n", adap->name);

    pm_runtime_no_callbacks(&adap->dev);

#ifdef CONFIG_I2C_COMPAT
    res = class_compat_create_link(i2c_adapter_compat_class, &adap->dev,
                       adap->dev.parent);
    if (res)
        dev_warn(&adap->dev,
             "Failed to create compatibility class link\n");
#endif

    /* bus recovery specific initialization */
    if (adap->bus_recovery_info) {
        struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;

        if (!bri->recover_bus) {
            dev_err(&adap->dev, "No recover_bus() found, not using recovery\n");
            adap->bus_recovery_info = NULL;
            goto exit_recovery;
        }

        /* Generic GPIO recovery */
        if (bri->recover_bus == i2c_generic_gpio_recovery) {
            if (!gpio_is_valid(bri->scl_gpio)) {
                dev_err(&adap->dev, "Invalid SCL gpio, not using recovery\n");
                adap->bus_recovery_info = NULL;
                goto exit_recovery;
            }

            if (gpio_is_valid(bri->sda_gpio))
                bri->get_sda = get_sda_gpio_value;
            else
                bri->get_sda = NULL;

            bri->get_scl = get_scl_gpio_value;
            bri->set_scl = set_scl_gpio_value;
        } else if (!bri->set_scl || !bri->get_scl) {
            /* Generic SCL recovery */
            dev_err(&adap->dev, "No {get|set}_gpio() found, not using recovery\n");
            adap->bus_recovery_info = NULL;
        }
    }

exit_recovery:
    /* create pre-declared device nodes */
    of_i2c_register_devices(adap);    // 扫描设备树配置,构造i2c_board_info创建 i2c_client并注册
    acpi_i2c_register_devices(adap);
    acpi_i2c_install_space_handler(adap);

    if (adap->nr < __i2c_first_dynamic_bus_num)
        i2c_scan_static_board_info(adap);    // 根据前期静态配置好的board info,创建并注册i2c_client

    /* Notify drivers */
    mutex_lock(&core_lock);
    bus_for_each_drv(&i2c_bus_type, NULL, adap, __process_new_adapter);  // 扫描 i2c_bus_type 总线下的驱动i2c_driver,探测并创建driver支持的 i2c_client,注册之
    mutex_unlock(&core_lock);

    return 0;

out_list:
    mutex_lock(&core_lock);
    idr_remove(&i2c_adapter_idr, adap->nr);
    mutex_unlock(&core_lock);
    return res;
}
 

static int __process_new_adapter(struct device_driver *d, void *data)
{
    return i2c_do_add_adapter(to_i2c_driver(d), data);  // 匹配 i2c_driver 下的 address_list,探测 i2c_client
}
 

static int i2c_do_add_adapter(struct i2c_driver *driver,
                  struct i2c_adapter *adap)
{
    /* Detect supported devices on that bus, and instantiate them */
    i2c_detect(adap, driver);    // 探测 i2c_client

    /* Let legacy drivers scan this bus for matching devices */
    if (driver->attach_adapter) {
        dev_warn(&adap->dev, "%s: attach_adapter method is deprecated\n",
             driver->driver.name);
        dev_warn(&adap->dev, "Please use another way to instantiate "
             "your i2c_client\n");
        /* We ignore the return code; if it fails, too bad */
        driver->attach_adapter(adap);
    }
    return 0;
}
 

static int i2c_detect(struct i2c_adapter *adapter, struct i2c_driver *driver)
{
    const unsigned short *address_list;
    struct i2c_client *temp_client;
    int i, err = 0;
    int adap_id = i2c_adapter_id(adapter);

    address_list = driver->address_list;  // 驱动支持的 i2c_client address
    if (!driver->detect || !address_list)
        return 0;

    /* Warn that the adapter lost class based instantiation */
    if (adapter->class == I2C_CLASS_DEPRECATED) {
        dev_dbg(&adapter->dev,
            "This adapter dropped support for I2C classes and "
            "won't auto-detect %s devices anymore. If you need it, check "
            "'Documentation/i2c/instantiating-devices' for alternatives.\n",
            driver->driver.name);
        return 0;
    }

    /* Stop here if the classes do not match */
    if (!(adapter->class & driver->class))
        return 0;

    /* Set up a temporary client to help detect callback */
    temp_client = kzalloc(sizeof(struct i2c_client), GFP_KERNEL);  // 创建临时 i2c_client
    if (!temp_client)
        return -ENOMEM;
    temp_client->adapter = adapter;

    for (i = 0; address_list[i] != I2C_CLIENT_END; i += 1) {
        dev_dbg(&adapter->dev, "found normal entry for adapter %d, "
            "addr 0x%02x\n", adap_id, address_list[i]);
        temp_client->addr = address_list[i];
        err = i2c_detect_address(temp_client, driver);  // 根据 driver 支持的 address_list,执行探测函数
        if (unlikely(err))
            break;
    }

    kfree(temp_client);
    return err;
}
 

static int i2c_detect_address(struct i2c_client *temp_client,
                  struct i2c_driver *driver)
{
    struct i2c_board_info info;
    struct i2c_adapter *adapter = temp_client->adapter;
    int addr = temp_client->addr;
    int err;

    /* Make sure the address is valid */
    err = i2c_check_7bit_addr_validity_strict(addr);
    if (err) {
        dev_warn(&adapter->dev, "Invalid probe address 0x%02x\n",
             addr);
        return err;
    }

    /* Skip if already in use (7 bit, no need to encode flags) */
    if (i2c_check_addr_busy(adapter, addr))
        return 0;

    /* Make sure there is something at this address */
    if (!i2c_default_probe(adapter, addr))    // 执行默认的探测函数
        return 0;

    /* Finally call the custom detection function */
    memset(&info, 0, sizeof(struct i2c_board_info));
    info.addr = addr;
    err = driver->detect(temp_client, &info);    // 执行驱动定义的探测函数
    if (err) {
        /* -ENODEV is returned if the detection fails. We catch it
           here as this isn't an error. */
        return err == -ENODEV ? 0 : err;
    }

    /* Consistency check */
    if (info.type[0] == '\0') {
        dev_err(&adapter->dev, "%s detection function provided "
            "no name for 0x%x\n", driver->driver.name,
            addr);
    } else {
        struct i2c_client *client;

        /* Detection succeeded, instantiate the device */
        if (adapter->class & I2C_CLASS_DEPRECATED)
            dev_warn(&adapter->dev,
                "This adapter will soon drop class based instantiation of devices. "
                "Please make sure client 0x%02x gets instantiated by other means. "
                "Check 'Documentation/i2c/instantiating-devices' for details.\n",
                info.addr);

        dev_dbg(&adapter->dev, "Creating %s at 0x%02x\n",
            info.type, info.addr);
        client = i2c_new_device(adapter, &info);    // 创建并注册这个正式的 i2c_client
        if (client)
            list_add_tail(&client->detected, &driver->clients);    // 将该 i2c_client 链入 driver->clients链表
        else
            dev_err(&adapter->dev, "Failed creating %s at 0x%02x\n",
                info.type, info.addr);
    }
    return 0;
}

        由上面的代码流程可见,在注册 i2c_adapter的过程中,i2c核心层会根据设备树配置,静态board info 配置去创建该 i2c_adapter下的子设备 i2c_client并匹配相应的 i2c_driver,最后注册进 i2c_bus_type。

        (2)I2C设备驱动注册:int i2c_register_driver(struct module *owner, struct i2c_driver *driver);

int i2c_register_driver(struct module *owner, struct i2c_driver *driver)
{
    int res;

    /* Can't register until after driver model init */
    if (unlikely(WARN_ON(!i2c_bus_type.p)))
        return -EAGAIN;

    /* add the driver to the list of i2c drivers in the driver core */
    driver->driver.owner = owner;
    driver->driver.bus = &i2c_bus_type;    // 设置驱动的注册总线 i2c_bus_type

    /* When registration returns, the driver core
     * will have called probe() for all matching-but-unbound devices.
     */
    res = driver_register(&driver->driver);    // 注册进kernel设备驱动框架
    if (res)
        return res;

    pr_debug("i2c-core: driver [%s] registered\n", driver->driver.name);

    INIT_LIST_HEAD(&driver->clients);
    /* Walk the adapters that are already present */
    i2c_for_each_dev(driver, __process_new_driver);    // 轮询 i2c_bus_type 下的所有设备,并匹配驱动

    return 0;
}
 

static int __process_new_driver(struct device *dev, void *data)
{
    if (dev->type != &i2c_adapter_type)    // 非 i2c_adapter 不能进一步处理
        return 0;
    return i2c_do_add_adapter(data, to_i2c_adapter(dev));    // 根据该驱动支持的address list,探测,创建并注册相应的i2c_client
}

    (3)I2C 数据发送:int i2c_master_send(const struct i2c_client *client, const char *buf, int count);

int i2c_master_send(const struct i2c_client *client, const char *buf, int count)
{
    int ret;
    struct i2c_adapter *adap = client->adapter;
    struct i2c_msg msg;

    // 构造 i2c_msg

    msg.addr = client->addr;
    msg.flags = client->flags & I2C_M_TEN;
    msg.len = count;
    msg.buf = (char *)buf;

    ret = i2c_transfer(adap, &msg, 1);    // 发送数据

    /*
     * If everything went ok (i.e. 1 msg transmitted), return #bytes
     * transmitted, else error code.
     */
    return (ret == 1) ? count : ret;
}
 

int i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
{
    int ret;

    /* REVISIT the fault reporting model here is weak:
     *
     *  - When we get an error after receiving N bytes from a slave,
     *    there is no way to report "N".
     *
     *  - When we get a NAK after transmitting N bytes to a slave,
     *    there is no way to report "N" ... or to let the master
     *    continue executing the rest of this combined message, if
     *    that's the appropriate response.
     *
     *  - When for example "num" is two and we successfully complete
     *    the first message but get an error part way through the
     *    second, it's unclear whether that should be reported as
     *    one (discarding status on the second message) or errno
     *    (discarding status on the first one).
     */

    if (adap->algo->master_xfer) {
#ifdef DEBUG
        for (ret = 0; ret < num; ret++) {
            dev_dbg(&adap->dev, "master_xfer[%d] %c, addr=0x%02x, "
                "len=%d%s\n", ret, (msgs[ret].flags & I2C_M_RD)
                ? 'R' : 'W', msgs[ret].addr, msgs[ret].len,
                (msgs[ret].flags & I2C_M_RECV_LEN) ? "+" : "");
        }
#endif

        if (in_atomic() || irqs_disabled()) {
            ret = i2c_trylock_adapter(adap);
            if (!ret)
                /* I2C activity is ongoing. */
                return -EAGAIN;
        } else {
            i2c_lock_adapter(adap);
        }

        ret = __i2c_transfer(adap, msgs, num);    // 锁定 i2c_adapter,然后调用 __i2c_transfer 进行实际的数据发送
        i2c_unlock_adapter(adap);

        return ret;
    } else {
        dev_dbg(&adap->dev, "I2C level transfers not supported\n");
        return -EOPNOTSUPP;
    }
}
 

int __i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
{
    unsigned long orig_jiffies;
    int ret, try;

    if (adap->quirks && i2c_check_for_quirks(adap, msgs, num))
        return -EOPNOTSUPP;

    /* i2c_trace_msg gets enabled when tracepoint i2c_transfer gets
     * enabled.  This is an efficient way of keeping the for-loop from
     * being executed when not needed.
     */
    if (static_key_false(&i2c_trace_msg)) {
        int i;
        for (i = 0; i < num; i++)
            if (msgs[i].flags & I2C_M_RD)
                trace_i2c_read(adap, &msgs[i], i);
            else
                trace_i2c_write(adap, &msgs[i], i);
    }

    /* Retry automatically on arbitration loss */
    orig_jiffies = jiffies;
    for (ret = 0, try = 0; try <= adap->retries; try++) {
        ret = adap->algo->master_xfer(adap, msgs, num);    // 最终调用i2c_client关联的adapter的algo的master_xfer方法
        if (ret != -EAGAIN)
            break;
        if (time_after(jiffies, orig_jiffies + adap->timeout))
            break;
    }

    if (static_key_false(&i2c_trace_msg)) {
        int i;
        for (i = 0; i < ret; i++)
            if (msgs[i].flags & I2C_M_RD)
                trace_i2c_reply(adap, &msgs[i], i);
        trace_i2c_result(adap, i, ret);
    }

    return ret;
}
        由此可见,每个具体子设备的数据发送和接收,最终还是调用adapter的algorithm方法。adapter的algorithm实现的是底层的I2C总线协议,是该总线通用的数据收发方法。每个子设备的更复杂的协议是建立在该通用方法之上。

    4,s3c24xx I2C控制器驱动分析

        源码路径:drivers/i2c/busses/i2c-s3c2410.c

        I2C控制器设备要么通过设备树配置,要么通过平台相关代码在kernel初始化时注册到系统platform总线。那么,通过注册一个platform_driver,匹配该 i2c 控制器设备 platform_device,然后在driver的probe()的时候,注册该i2c的adapter。也就是说,通过注册一个i2c的platform_driver,最终会把该i2c总线的adapter及该总线下的所有i2c_client全部注册起来,如果总线上预先注册了i2c_driver驱动,在注册i2c_client的同时,也会去匹配相应的i2c_driver驱动。代码分析如下:

        (1)i2c_adapter注册:

static struct platform_driver s3c24xx_i2c_driver = {
    .probe        = s3c24xx_i2c_probe,    // 驱动探测方法
    .remove        = s3c24xx_i2c_remove,
    .id_table    = s3c24xx_driver_ids,    // 平台设备id_table匹配
    .driver        = {
        .name    = "s3c-i2c",
        .pm    = S3C24XX_DEV_PM_OPS,
        .of_match_table = of_match_ptr(s3c24xx_i2c_match),    // 设备树 compatible 字段匹配
    },
};

static int __init i2c_adap_s3c_init(void)
{
    return platform_driver_register(&s3c24xx_i2c_driver);
}
subsys_initcall(i2c_adap_s3c_init);    // 子系统初始化时调用 i2c_adap_s3c_init

 

struct s3c24xx_i2c {    // 本质上这个结构是一个i2c_adapter
    wait_queue_head_t    wait;    // 用户进程/线程等待队列
    kernel_ulong_t        quirks;
    unsigned int        suspended:1;

    struct i2c_msg        *msg;    // i2c_msg类型数组
    unsigned int        msg_num; // i2c_msg数组大小
    unsigned int        msg_idx;    // 处理数组的索引
    unsigned int        msg_ptr;    // i2c_msg内部buffer索引

    unsigned int        tx_setup;
    unsigned int        irq;    // 中断请求编号

    enum s3c24xx_i2c_state    state;
    unsigned long        clkrate;

    void __iomem        *regs;    // 控制器寄存器起始地址
    struct clk        *clk;
    struct device        *dev;
    struct i2c_adapter    adap;    // 内嵌一个 i2c_adapter 结构

    struct s3c2410_platform_i2c    *pdata;
    int            gpios[2];
    struct pinctrl          *pctrl;
#if defined(CONFIG_ARM_S3C24XX_CPUFREQ)
    struct notifier_block    freq_transition;
#endif
    struct regmap        *sysreg;
    unsigned int        sys_i2c_cfg;
};
 

static int s3c24xx_i2c_probe(struct platform_device *pdev)
{
    struct s3c24xx_i2c *i2c;
    struct s3c2410_platform_i2c *pdata = NULL;
    struct resource *res;
    int ret;

    if (!pdev->dev.of_node) {
        pdata = dev_get_platdata(&pdev->dev);
        if (!pdata) {
            dev_err(&pdev->dev, "no platform data\n");
            return -EINVAL;
        }
    }

    i2c = devm_kzalloc(&pdev->dev, sizeof(struct s3c24xx_i2c), GFP_KERNEL);    // 分配一个s3c24xx_i2c结构,本质上是一个i2c_adapter
    if (!i2c)
        return -ENOMEM;

    i2c->pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
    if (!i2c->pdata)
        return -ENOMEM;

    i2c->quirks = s3c24xx_get_device_quirks(pdev);
    i2c->sysreg = ERR_PTR(-ENOENT);
    if (pdata)
        memcpy(i2c->pdata, pdata, sizeof(*pdata));
    else
        s3c24xx_i2c_parse_dt(pdev->dev.of_node, i2c);

    strlcpy(i2c->adap.name, "s3c2410-i2c", sizeof(i2c->adap.name));
    i2c->adap.owner = THIS_MODULE;
    i2c->adap.algo = &s3c24xx_i2c_algorithm;    // 初始化adapter的算法结构
    i2c->adap.retries = 2;    // 重传次数
    i2c->adap.class = I2C_CLASS_DEPRECATED;
    i2c->tx_setup = 50;

    init_waitqueue_head(&i2c->wait);

    /* find the clock and enable it */

    i2c->dev = &pdev->dev;
    i2c->clk = devm_clk_get(&pdev->dev, "i2c");
    if (IS_ERR(i2c->clk)) {
        dev_err(&pdev->dev, "cannot get clock\n");
        return -ENOENT;
    }

    dev_dbg(&pdev->dev, "clock source %p\n", i2c->clk);


    /* map the registers */

    res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
    i2c->regs = devm_ioremap_resource(&pdev->dev, res);    // 重映射 io端口寄存器

    if (IS_ERR(i2c->regs))
        return PTR_ERR(i2c->regs);

    dev_dbg(&pdev->dev, "registers %p (%p)\n",
        i2c->regs, res);

    /* setup info block for the i2c core */

    i2c->adap.algo_data = i2c;
    i2c->adap.dev.parent = &pdev->dev;

    i2c->pctrl = devm_pinctrl_get_select_default(i2c->dev);

    /* inititalise the i2c gpio lines */

    if (i2c->pdata->cfg_gpio) {
        i2c->pdata->cfg_gpio(to_platform_device(i2c->dev));
    } else if (IS_ERR(i2c->pctrl) && s3c24xx_i2c_parse_dt_gpio(i2c)) {
        return -EINVAL;
    }

    /* initialise the i2c controller */

    clk_prepare_enable(i2c->clk);
    ret = s3c24xx_i2c_init(i2c);    // 设置 i2c 分频
    clk_disable(i2c->clk);
    if (ret != 0) {
        dev_err(&pdev->dev, "I2C controller init failed\n");
        return ret;
    }
    /* find the IRQ for this unit (note, this relies on the init call to
     * ensure no current IRQs pending
     */

    if (!(i2c->quirks & QUIRK_POLL)) {
        i2c->irq = ret = platform_get_irq(pdev, 0);
        if (ret <= 0) {
            dev_err(&pdev->dev, "cannot find IRQ\n");
            clk_unprepare(i2c->clk);
            return ret;
        }

    ret = devm_request_irq(&pdev->dev, i2c->irq, s3c24xx_i2c_irq, 0,
                dev_name(&pdev->dev), i2c);    // 请求中断,注册中断处理上半部

        if (ret != 0) {
            dev_err(&pdev->dev, "cannot claim IRQ %d\n", i2c->irq);
            clk_unprepare(i2c->clk);
            return ret;
        }
    }

    ret = s3c24xx_i2c_register_cpufreq(i2c);
    if (ret < 0) {
        dev_err(&pdev->dev, "failed to register cpufreq notifier\n");
        clk_unprepare(i2c->clk);
        return ret;
    }

    /* Note, previous versions of the driver used i2c_add_adapter()
     * to add the bus at any number. We now pass the bus number via
     * the platform data, so if unset it will now default to always
     * being bus 0.
     */

    i2c->adap.nr = i2c->pdata->bus_num;
    i2c->adap.dev.of_node = pdev->dev.of_node;

    platform_set_drvdata(pdev, i2c);

    pm_runtime_enable(&pdev->dev);

    ret = i2c_add_numbered_adapter(&i2c->adap);    // 注册 adapter
    if (ret < 0) {
        dev_err(&pdev->dev, "failed to add bus to i2c core\n");
        pm_runtime_disable(&pdev->dev);
        s3c24xx_i2c_deregister_cpufreq(i2c);
        clk_unprepare(i2c->clk);
        return ret;
    }

    pm_runtime_enable(&i2c->adap.dev);

    dev_info(&pdev->dev, "%s: S3C I2C adapter\n", dev_name(&i2c->adap.dev));
    return 0;
}
        (2)中断处理函数:

static irqreturn_t s3c24xx_i2c_irq(int irqno, void *dev_id)
{
    struct s3c24xx_i2c *i2c = dev_id;
    unsigned long status;
    unsigned long tmp;

    status = readl(i2c->regs + S3C2410_IICSTAT);

    if (status & S3C2410_IICSTAT_ARBITR) {
        /* deal with arbitration loss */
        dev_err(i2c->dev, "deal with arbitration loss\n");
    }

    if (i2c->state == STATE_IDLE) {
        dev_dbg(i2c->dev, "IRQ: error i2c->state == IDLE\n");

        tmp = readl(i2c->regs + S3C2410_IICCON);
        tmp &= ~S3C2410_IICCON_IRQPEND;
        writel(tmp, i2c->regs +  S3C2410_IICCON);
        goto out;
    }

    /* pretty much this leaves us with the fact that we've
     * transmitted or received whatever byte we last sent */

    i2c_s3c_irq_nextbyte(i2c, status);    // 处理i2c消息状态

 out:
    return IRQ_HANDLED;
}
 

static int i2c_s3c_irq_nextbyte(struct s3c24xx_i2c *i2c, unsigned long iicstat)
{
    unsigned long tmp;
    unsigned char byte;
    int ret = 0;

    switch (i2c->state) {

    case STATE_IDLE:
        dev_err(i2c->dev, "%s: called in STATE_IDLE\n", __func__);
        goto out;

    case STATE_STOP:
        dev_err(i2c->dev, "%s: called in STATE_STOP\n", __func__);
        s3c24xx_i2c_disable_irq(i2c);    // 停止中断处理,结束本次传输周期
        goto out_ack;     // 发送 ACK

    case STATE_START:
        /* last thing we did was send a start condition on the
         * bus, or started a new i2c message
         */

        if (iicstat & S3C2410_IICSTAT_LASTBIT &&
            !(i2c->msg->flags & I2C_M_IGNORE_NAK)) {    // 异常处理,发送START消息后没有收到ACK消息

            /* ack was not received... */

            dev_dbg(i2c->dev, "ack was not received\n");
            s3c24xx_i2c_stop(i2c, -ENXIO);
            goto out_ack;
        }

        if (i2c->msg->flags & I2C_M_RD)
            i2c->state = STATE_READ;    // 发送START消息后,修改I2C状态为接收数据状态

        else
            i2c->state = STATE_WRITE;    // 发送START消息后,修改I2C状态为发送数据状态

        /* terminate the transfer if there is nothing to do
         * as this is used by the i2c probe to find devices. */

        if (is_lastmsg(i2c) && i2c->msg->len == 0) {
            s3c24xx_i2c_stop(i2c, 0);
            goto out_ack;
        }

        if (i2c->state == STATE_READ)
            goto prepare_read;    // 准备好接收消息缓存,等待下次中断处理,转到 STATE_READ状态

        /* fall through to the write state, as we will need to
         * send a byte as well */

    case STATE_WRITE:
        /* we are writing data to the device... check for the
         * end of the message, and if so, work out what to do
         */

        if (!(i2c->msg->flags & I2C_M_IGNORE_NAK)) {
            if (iicstat & S3C2410_IICSTAT_LASTBIT) {
                dev_dbg(i2c->dev, "WRITE: No Ack\n");

                s3c24xx_i2c_stop(i2c, -ECONNREFUSED);
                goto out_ack;
            }
        }

 // 发送数据

 retry_write:

        if (!is_msgend(i2c)) {    // 当前消息没有发送完
            byte = i2c->msg->buf[i2c->msg_ptr++];
            writeb(byte, i2c->regs + S3C2410_IICDS);    // 继续发送当前消息的一个字节

            /* delay after writing the byte to allow the
             * data setup time on the bus, as writing the
             * data to the register causes the first bit
             * to appear on SDA, and SCL will change as
             * soon as the interrupt is acknowledged */

            ndelay(i2c->tx_setup);

        } else if (!is_lastmsg(i2c)) {    // 上一个消息发送完,转到下一个消息开始
            /* we need to go to the next i2c message */

            dev_dbg(i2c->dev, "WRITE: Next Message\n");

            i2c->msg_ptr = 0;
            i2c->msg_idx++;
            i2c->msg++;

            /* check to see if we need to do another message */
            if (i2c->msg->flags & I2C_M_NOSTART) {

                if (i2c->msg->flags & I2C_M_RD) {    // 异常处理,消息本身不支持 START,但是消息由WRITE变成READ必须发送START,停止
                    /* cannot do this, the controller
                     * forces us to send a new START
                     * when we change direction */

                    s3c24xx_i2c_stop(i2c, -EINVAL);
                }

                goto retry_write;
            } else {
                /* send the new start */
                s3c24xx_i2c_message_start(i2c, i2c->msg);  // 发送一个新的消息,必须重新传输 START 消息(addr+R/W)
                i2c->state = STATE_START;    // 状态重置为 STATE_START
            }

        } else {
            /* send stop */

            s3c24xx_i2c_stop(i2c, 0);
        }
        break;

    case STATE_READ:
        /* we have a byte of data in the data register, do
         * something with it, and then work out whether we are
         * going to do any more read/write
         */

        byte = readb(i2c->regs + S3C2410_IICDS);    // 从数据寄存器读取一个byte数据
        i2c->msg->buf[i2c->msg_ptr++] = byte;

        /* Add actual length to read for smbus block read */
        if (i2c->msg->flags & I2C_M_RECV_LEN && i2c->msg->len == 1)
            i2c->msg->len += byte;

 // 准备好下一次传输buffer
 prepare_read:
        if (is_msglast(i2c)) {
            /* last byte of buffer */

            if (is_lastmsg(i2c))
                s3c24xx_i2c_disable_ack(i2c);    // 最后一个消息的最后一个字节,停止接收

        } else if (is_msgend(i2c)) {    // 当前消息buffer已满
            /* ok, we've read the entire buffer, see if there
             * is anything else we need to do */

            if (is_lastmsg(i2c)) {    // 当前消息是最后一个消息,传输已经完成,停止接收
                /* last message, send stop and complete */
                dev_dbg(i2c->dev, "READ: Send Stop\n");

                s3c24xx_i2c_stop(i2c, 0);    // 停止数据传输,唤醒等待队列上的进程/线程,完成数据传输
            } else {    // 当前消息缓存未满,准备好接收buffer,继续等待下一次中断接收处理
                /* go to the next transfer */
                dev_dbg(i2c->dev, "READ: Next Transfer\n");

                i2c->msg_ptr = 0;
                i2c->msg_idx++;
                i2c->msg++;
            }
        }

        break;
    }

    /* acknowlegde the IRQ and get back on with the work */

 out_ack:    // 清除中断挂起
    tmp = readl(i2c->regs + S3C2410_IICCON);
    tmp &= ~S3C2410_IICCON_IRQPEND;
    writel(tmp, i2c->regs + S3C2410_IICCON);

 out:
    return ret;
}

 

static inline void s3c24xx_i2c_stop(struct s3c24xx_i2c *i2c, int ret)
{
    unsigned long iicstat = readl(i2c->regs + S3C2410_IICSTAT);

    dev_dbg(i2c->dev, "STOP\n");

    /*
     * The datasheet says that the STOP sequence should be:
     *  1) I2CSTAT.5 = 0    - Clear BUSY (or 'generate STOP')
     *  2) I2CCON.4 = 0    - Clear IRQPEND
     *  3) Wait until the stop condition takes effect.
     *  4*) I2CSTAT.4 = 0    - Clear TXRXEN
     *
     * Where, step "4*" is only for buses with the "HDMIPHY" quirk.
     *
     * However, after much experimentation, it appears that:
     * a) normal buses automatically clear BUSY and transition from
     *    Master->Slave when they complete generating a STOP condition.
     *    Therefore, step (3) can be done in doxfer() by polling I2CCON.4
     *    after starting the STOP generation here.
     * b) HDMIPHY bus does neither, so there is no way to do step 3.
     *    There is no indication when this bus has finished generating
     *    STOP.
     *
     * In fact, we have found that as soon as the IRQPEND bit is cleared in
     * step 2, the HDMIPHY bus generates the STOP condition, and then
     * immediately starts transferring another data byte, even though the
     * bus is supposedly stopped.  This is presumably because the bus is
     * still in "Master" mode, and its BUSY bit is still set.
     *
     * To avoid these extra post-STOP transactions on HDMI phy devices, we
     * just disable Serial Output on the bus (I2CSTAT.4 = 0) directly,
     * instead of first generating a proper STOP condition.  This should
     * float SDA & SCK terminating the transfer.  Subsequent transfers
     *  start with a proper START condition, and proceed normally.
     *
     * The HDMIPHY bus is an internal bus that always has exactly two
     * devices, the host as Master and the HDMIPHY device as the slave.
     * Skipping the STOP condition has been tested on this bus and works.
     */
    if (i2c->quirks & QUIRK_HDMIPHY) {
        /* Stop driving the I2C pins */
        iicstat &= ~S3C2410_IICSTAT_TXRXEN;
    } else {
        /* stop the transfer */
        iicstat &= ~S3C2410_IICSTAT_START;
    }
    writel(iicstat, i2c->regs + S3C2410_IICSTAT);

    i2c->state = STATE_STOP;

    s3c24xx_i2c_master_complete(i2c, ret);    // 消息缓存处理,等待队列进程/线程唤醒
    s3c24xx_i2c_disable_irq(i2c);
}

static inline void s3c24xx_i2c_master_complete(struct s3c24xx_i2c *i2c, int ret)
{
    dev_dbg(i2c->dev, "master_complete %d\n", ret);

    // 缓存处理

    i2c->msg_ptr = 0;
    i2c->msg = NULL;
    i2c->msg_idx++;
    i2c->msg_num = 0;
    if (ret)
        i2c->msg_idx = ret;

    if (!(i2c->quirks & QUIRK_POLL))
        wake_up(&i2c->wait);    // 等待队列唤醒
}

        (3)adapter算法:

static const struct i2c_algorithm s3c24xx_i2c_algorithm = {
    .master_xfer        = s3c24xx_i2c_xfer,
    .functionality        = s3c24xx_i2c_func,
};
 

static int s3c24xx_i2c_xfer(struct i2c_adapter *adap,
            struct i2c_msg *msgs, int num)
{
    struct s3c24xx_i2c *i2c = (struct s3c24xx_i2c *)adap->algo_data;
    int retry;
    int ret;

    pm_runtime_get_sync(&adap->dev);
    ret = clk_enable(i2c->clk);
    if (ret)
        return ret;

    for (retry = 0; retry < adap->retries; retry++) {    // 传输失败,重传

        ret = s3c24xx_i2c_doxfer(i2c, msgs, num);    // 实际的数据传输

        if (ret != -EAGAIN) {
            clk_disable(i2c->clk);
            pm_runtime_put(&adap->dev);
            return ret;
        }

        dev_dbg(i2c->dev, "Retrying transmission (%d)\n", retry);

        udelay(100);
    }

    clk_disable(i2c->clk);
    pm_runtime_put(&adap->dev);
    return -EREMOTEIO;
}
 

static int s3c24xx_i2c_doxfer(struct s3c24xx_i2c *i2c,
                  struct i2c_msg *msgs, int num)
{
    unsigned long timeout;
    int ret;

    if (i2c->suspended)
        return -EIO;

    ret = s3c24xx_i2c_set_master(i2c);    // 设置本I2C控制器为主控设备
    if (ret != 0) {
        dev_err(i2c->dev, "cannot get bus (error %d)\n", ret);
        ret = -EAGAIN;
        goto out;
    }

    // 构造 i2c_msg 消息

    i2c->msg     = msgs;
    i2c->msg_num = num;
    i2c->msg_ptr = 0;
    i2c->msg_idx = 0;
    i2c->state   = STATE_START;

    s3c24xx_i2c_enable_irq(i2c);    // 使能中断
    s3c24xx_i2c_message_start(i2c, msgs);    // 发送 START 消息(addr+R/W)

    if (i2c->quirks & QUIRK_POLL) {
        ret = i2c->msg_idx;

        if (ret != num)
            dev_dbg(i2c->dev, "incomplete xfer (%d)\n", ret);

        goto out;
    }

    timeout = wait_event_timeout(i2c->wait, i2c->msg_num == 0, HZ * 5);    // 当前进程/线程挂起在条件等待队列,要么超时唤醒,要么i2c->msg_num == 0 条件满足唤醒

    ret = i2c->msg_idx;

    /* having these next two as dev_err() makes life very
     * noisy when doing an i2cdetect */

    if (timeout == 0)
        dev_dbg(i2c->dev, "timeout\n");    // 超时唤醒

    else if (ret != num)
        dev_dbg(i2c->dev, "incomplete xfer (%d)\n", ret);    // 传输未完成

    /* For QUIRK_HDMIPHY, bus is already disabled */
    if (i2c->quirks & QUIRK_HDMIPHY)
        goto out;

    s3c24xx_i2c_wait_idle(i2c);

    s3c24xx_i2c_disable_bus(i2c);

 out:
    i2c->state = STATE_IDLE;

    return ret;
}
 

    以上是I2C总线驱动框架部分,代码框架比较清晰。一般来说,I2C总线控制器的驱动代码kernel已经集成(除非新的i2c总线控制器kernel还未支持),需要用户编写的驱动程序一般是从设备驱动代码,即,i2c_driver代码。下一篇将会分析一个基于I2C的eeprom的驱动程序,来完善I2C的体系架构。

    

转载于:https://my.oschina.net/yepanl/blog/2985976

你可能感兴趣的:(Kernel I2C子系统)