图像处理作业第三次

学号:2019E8013261007
班级:705
姓名:蔡少斐

图像处理作业第三次

1.根据书中对傅立叶变换的定义,证明课本165页上有关傅立叶变换的平移性质。

F ( u − u 0 , v − v 0 ) F(u-u_0,v-v_0) F(uu0,vv0)

= ∑ x = 0 M − 1 ∑ y = 0 N − 1 f ( x , y ) e − j 2 π ( ( u − u 0 ) x / M + ( v − v 0 ) y / N ) =\sum_{x=0}^{M-1}\sum_{y=0}^{N-1}f(x,y)e^{-j2\pi((u-u_0)x/M+(v-v_0)y/N)} =x=0M1y=0N1f(x,y)ej2π((uu0)x/M+(vv0)y/N)

= ∑ x = 0 M − 1 ∑ y = 0 N − 1 f ( x , y ) e j 2 π ( u 0 x / M + v 0 y / N ) e − j 2 π ( u x / M + v y / N ) =\sum_{x=0}^{M-1}\sum_{y=0}^{N-1}f(x,y)e^{j2\pi(u_0x/M+v_0y/N)}e^{-j2\pi(ux/M+vy/N)} =x=0M1y=0N1f(x,y)ej2π(u0x/M+v0y/N)ej2π(ux/M+vy/N)

= D F T ( f ( x , y ) e j 2 π ( u 0 x / M + v 0 y / N ) ) =DFT(f(x,y)e^{j2\pi(u_0x/M+v_0y/N)}) =DFT(f(x,y)ej2π(u0x/M+v0y/N))

f ( x − x 0 , y − y 0 ) f(x-x_0,y-y_0) f(xx0,yy0)

= ∑ u = 0 M − 1 ∑ v = 0 N − 1 F ( u , v ) e j 2 π ( ( x − x 0 ) u / M + ( y − y 0 ) v / N ) =\sum_{u=0}^{M-1}\sum_{v=0}^{N-1}F(u,v)e^{j2\pi((x-x_0)u/M+(y-y_0)v/N)} =u=0M1v=0N1F(u,v)ej2π((xx0)u/M+(yy0)v/N)

= ∑ u = 0 M − 1 ∑ v = 0 N − 1 f ( x , y ) e − j 2 π ( x u 0 / M + y v 0 / N ) e j 2 π ( x u / M + y v / N ) =\sum_{u=0}^{M-1}\sum_{v=0}^{N-1}f(x,y)e^{-j2\pi(xu_0/M+yv_0/N)}e^{j2\pi(xu/M+yv/N)} =u=0M1v=0N1f(x,y)ej2π(xu0/M+yv0/N)ej2π(xu/M+yv/N)

= I D F T ( F ( u , v ) e j 2 π ( x u 0 / M + y v 0 / N ) ) =IDFT(F(u,v)e^{j2\pi(xu_0/M+yv_0/N)}) =IDFT(F(u,v)ej2π(xu0/M+yv0/N))

2. 课本171页上习题4.9。

f ( x , y ) → f ( x , y ) ( − 1 ) ( x + y ) f(x,y) \rightarrow f(x,y)(-1)^{(x+y)} f(x,y)f(x,y)(1)(x+y)

则根据如下公式,可得

F ( u − M 2 , v − N 2 ) = ∑ ∑ f ( x , y ) ( − 1 ) ( x + y ) e − j 2 π ( x u / M + y v / N ) F(u-\frac{M}{2},v-\frac{N}{2}) = \sum\sum f(x,y)(-1)^{(x+y)} e^{-j2\pi(xu/M+yv/N)} F(u2M,v2N)=f(x,y)(1)(x+y)ej2π(xu/M+yv/N)

→ F ( u − M 2 , v − N 2 ) = D F T ( f ( x , y ) ( − 1 ) ( x + y ) ) . . . . ( a ) \rightarrow F(u-\frac{M}{2},v-\frac{N}{2})=DFT(f(x,y)(-1)^{(x+y)}) ....(a) F(u2M,v2N)=DFT(f(x,y)(1)(x+y))....(a)

进行共轭变换,可得

F ∗ ( u − M 2 , v − N 2 ) = F ( M 2 − u , N 2 − v ) F^*(u-\frac{M}{2},v-\frac{N}{2}) = F(\frac{M}{2}-u,\frac{N}{2}-v) F(u2M,v2N)=F(2Mu,2Nv)

根据比例性 ,那么 ( a ) (a) (a)式可以写成:

F ( M 2 − u , N 2 − v ) = D F T ( f ( − x , − y ) ( − 1 ) ( x + y ) ) F(\frac{M}{2}-u,\frac{N}{2}-v) = DFT(f(-x,-y)(-1)^{(x+y)}) F(2Mu,2Nv)=DFT(f(x,y)(1)(x+y))

最后每个像素乘以 ( − 1 ) ( x + y ) (-1)^{(x+y)} (1)(x+y)得到

f ( − x , − y ) = f ( M − x , N − y ) f(-x,-y) = f(M-x,N-y) f(x,y)=f(Mx,Ny)

由此,关于中心对称。

3.证明高斯的傅立叶变换还是高斯函数。

已知:

e − π ( x 2 + y 2 ) = I D F T ( e − π ( u 2 + v 2 ) ) e^{-\pi (x^2+y^2)} = IDFT(e^{-\pi (u^2+v^2)}) eπ(x2+y2)=IDFT(eπ(u2+v2))

根据比例性

u ← 1 2 π σ u , v ← 1 2 π σ v u \leftarrow \frac{1}{\sqrt{2\pi}\sigma}u,v \leftarrow \frac{1}{\sqrt{2\pi}\sigma}v u2π σ1u,v2π σ1v

那么比例系数 a = b = 1 2 π σ a = b = \frac{1}{\sqrt{2\pi}\sigma} a=b=2π σ1

f ( a x , b y ) = 1 ∣ a b ∣ F ( u / a , v / b ) f(ax,by) = \frac{1}{|ab|}F(u/a,v/b) f(ax,by)=ab1F(u/a,v/b)

即有

F ( u , v ) = I D F T ( A e − ( u 2 + v 2 ) / 2 σ 2 ) = A 2 π σ 2 e − π 2 σ 2 ( x 2 + y 2 ) F(u,v) =IDFT(Ae^{- (u^2+v^2)/2\sigma^2}) = A2\pi\sigma^2e^{- \pi2\sigma^2(x^2+y^2)} F(u,v)=IDFT(Ae(u2+v2)/2σ2)=A2πσ2eπ2σ2(x2+y2)

你可能感兴趣的:(图像处理作业第三次)