学号:2019E8013261007
班级:705
姓名:蔡少斐
F ( u − u 0 , v − v 0 ) F(u-u_0,v-v_0) F(u−u0,v−v0)
= ∑ x = 0 M − 1 ∑ y = 0 N − 1 f ( x , y ) e − j 2 π ( ( u − u 0 ) x / M + ( v − v 0 ) y / N ) =\sum_{x=0}^{M-1}\sum_{y=0}^{N-1}f(x,y)e^{-j2\pi((u-u_0)x/M+(v-v_0)y/N)} =∑x=0M−1∑y=0N−1f(x,y)e−j2π((u−u0)x/M+(v−v0)y/N)
= ∑ x = 0 M − 1 ∑ y = 0 N − 1 f ( x , y ) e j 2 π ( u 0 x / M + v 0 y / N ) e − j 2 π ( u x / M + v y / N ) =\sum_{x=0}^{M-1}\sum_{y=0}^{N-1}f(x,y)e^{j2\pi(u_0x/M+v_0y/N)}e^{-j2\pi(ux/M+vy/N)} =∑x=0M−1∑y=0N−1f(x,y)ej2π(u0x/M+v0y/N)e−j2π(ux/M+vy/N)
= D F T ( f ( x , y ) e j 2 π ( u 0 x / M + v 0 y / N ) ) =DFT(f(x,y)e^{j2\pi(u_0x/M+v_0y/N)}) =DFT(f(x,y)ej2π(u0x/M+v0y/N))
f ( x − x 0 , y − y 0 ) f(x-x_0,y-y_0) f(x−x0,y−y0)
= ∑ u = 0 M − 1 ∑ v = 0 N − 1 F ( u , v ) e j 2 π ( ( x − x 0 ) u / M + ( y − y 0 ) v / N ) =\sum_{u=0}^{M-1}\sum_{v=0}^{N-1}F(u,v)e^{j2\pi((x-x_0)u/M+(y-y_0)v/N)} =∑u=0M−1∑v=0N−1F(u,v)ej2π((x−x0)u/M+(y−y0)v/N)
= ∑ u = 0 M − 1 ∑ v = 0 N − 1 f ( x , y ) e − j 2 π ( x u 0 / M + y v 0 / N ) e j 2 π ( x u / M + y v / N ) =\sum_{u=0}^{M-1}\sum_{v=0}^{N-1}f(x,y)e^{-j2\pi(xu_0/M+yv_0/N)}e^{j2\pi(xu/M+yv/N)} =∑u=0M−1∑v=0N−1f(x,y)e−j2π(xu0/M+yv0/N)ej2π(xu/M+yv/N)
= I D F T ( F ( u , v ) e j 2 π ( x u 0 / M + y v 0 / N ) ) =IDFT(F(u,v)e^{j2\pi(xu_0/M+yv_0/N)}) =IDFT(F(u,v)ej2π(xu0/M+yv0/N))
f ( x , y ) → f ( x , y ) ( − 1 ) ( x + y ) f(x,y) \rightarrow f(x,y)(-1)^{(x+y)} f(x,y)→f(x,y)(−1)(x+y)
则根据如下公式,可得
F ( u − M 2 , v − N 2 ) = ∑ ∑ f ( x , y ) ( − 1 ) ( x + y ) e − j 2 π ( x u / M + y v / N ) F(u-\frac{M}{2},v-\frac{N}{2}) = \sum\sum f(x,y)(-1)^{(x+y)} e^{-j2\pi(xu/M+yv/N)} F(u−2M,v−2N)=∑∑f(x,y)(−1)(x+y)e−j2π(xu/M+yv/N)
→ F ( u − M 2 , v − N 2 ) = D F T ( f ( x , y ) ( − 1 ) ( x + y ) ) . . . . ( a ) \rightarrow F(u-\frac{M}{2},v-\frac{N}{2})=DFT(f(x,y)(-1)^{(x+y)}) ....(a) →F(u−2M,v−2N)=DFT(f(x,y)(−1)(x+y))....(a)
进行共轭变换,可得
F ∗ ( u − M 2 , v − N 2 ) = F ( M 2 − u , N 2 − v ) F^*(u-\frac{M}{2},v-\frac{N}{2}) = F(\frac{M}{2}-u,\frac{N}{2}-v) F∗(u−2M,v−2N)=F(2M−u,2N−v)
根据比例性 ,那么 ( a ) (a) (a)式可以写成:
F ( M 2 − u , N 2 − v ) = D F T ( f ( − x , − y ) ( − 1 ) ( x + y ) ) F(\frac{M}{2}-u,\frac{N}{2}-v) = DFT(f(-x,-y)(-1)^{(x+y)}) F(2M−u,2N−v)=DFT(f(−x,−y)(−1)(x+y))
最后每个像素乘以 ( − 1 ) ( x + y ) (-1)^{(x+y)} (−1)(x+y)得到
f ( − x , − y ) = f ( M − x , N − y ) f(-x,-y) = f(M-x,N-y) f(−x,−y)=f(M−x,N−y)
由此,关于中心对称。
已知:
e − π ( x 2 + y 2 ) = I D F T ( e − π ( u 2 + v 2 ) ) e^{-\pi (x^2+y^2)} = IDFT(e^{-\pi (u^2+v^2)}) e−π(x2+y2)=IDFT(e−π(u2+v2))
根据比例性
令 u ← 1 2 π σ u , v ← 1 2 π σ v u \leftarrow \frac{1}{\sqrt{2\pi}\sigma}u,v \leftarrow \frac{1}{\sqrt{2\pi}\sigma}v u←2πσ1u,v←2πσ1v
那么比例系数 a = b = 1 2 π σ a = b = \frac{1}{\sqrt{2\pi}\sigma} a=b=2πσ1
f ( a x , b y ) = 1 ∣ a b ∣ F ( u / a , v / b ) f(ax,by) = \frac{1}{|ab|}F(u/a,v/b) f(ax,by)=∣ab∣1F(u/a,v/b)
即有
F ( u , v ) = I D F T ( A e − ( u 2 + v 2 ) / 2 σ 2 ) = A 2 π σ 2 e − π 2 σ 2 ( x 2 + y 2 ) F(u,v) =IDFT(Ae^{- (u^2+v^2)/2\sigma^2}) = A2\pi\sigma^2e^{- \pi2\sigma^2(x^2+y^2)} F(u,v)=IDFT(Ae−(u2+v2)/2σ2)=A2πσ2e−π2σ2(x2+y2)