1.文档编写目的
本文档讲述如何在CDH集群启用及配置Kerberos,您将学习到以下知识:
1.如何安装及配置KDC服务
2.如何通过CDH启用Kerberos
3.如何登录Kerberos并访问Hadoop相关服务
文档主要分为以下几步:
1.安装及配置KDC服务
2.CDH集群启用Kerberos
3.Kerberos使用
这篇文档将重点介绍如何在CDH集群启用及配置Kerberos,并基于以下假设:
1.CDH集群运行正常
2.集群未启用Kerberos
3.MySQL 5.1.73
以下是本次测试环境,但不是本操作手册的必需环境:
1.操作系统:CentOS 6.5
2.CDH和CM版本为5.12.0
3.采用root用户进行操作
2.KDC服务安装及配置
本文档中将KDC服务安装在Cloudera Manager Server所在服务器上(KDC服务可根据自己需要安装在其他服务器)
1.在Cloudera Manager服务器上安装KDC服务
[root@ip-172-31-6-148~]# yum -y install krb5-serverkrb5-libs krb5-auth-dialog krb5-workstation
2.修改/etc/krb5.conf配置
[root@ip-172-31-6-148 fayson_r]# vim /etc/krb5.conf
[logging]
default = FILE:/var/log/krb5libs.log
kdc = FILE:/var/log/krb5kdc.log
admin_server = FILE:/var/log/kadmind.log
[libdefaults]
default_realm = FAYSON.COM
dns_lookup_realm = false
dns_lookup_kdc = false
ticket_lifetime = 24h
renew_lifetime = 7d
forwardable = true
[realms]
FAYSON.COM = {
kdc = ip-172-31-6-148.fayson.com
admin_server = ip-172-31-6-148.fayson.com
}
[domain_realm]
.ip-172-31-6-148.fayson.com = FAYSON.COM
ip-172-31-6-148.fayson.com = FAYSON.COM
标红部分为需要修改的信息。
3.修改/var/kerberos/krb5kdc/kadm5.acl配置
[root@ip-172-31-6-148~]# vim /var/kerberos/krb5kdc/kadm5.acl
*/[email protected] *
4.修改/var/kerberos/krb5kdc/kdc.conf配置
[root@ip-172-31-6-148 ~]# vim /var/kerberos/krb5kdc/kdc.conf
[kdcdefaults]
kdc_ports = 88
kdc_tcp_ports = 88
[realms]
FAYSON.COM= {
#master_key_type = aes256-cts
max_renewable_life= 7d 0h 0m 0s
acl_file = /var/kerberos/krb5kdc/kadm5.acl
dict_file = /usr/share/dict/words
admin_keytab = /var/kerberos/krb5kdc/kadm5.keytab
supported_enctypes = aes256-cts:normal aes128-cts:normal des3-hmac-sha1:normal arcfour-hmac:normal des-hmac-sha1:n
ormal des-cbc-md5:normal des-cbc-crc:normal
}
标红部分为需要修改的配置。
5.创建Kerberos数据库
[root@ip-172-31-6-148 ~]# kdb5_util create –r FAYSON.COM -s
Loading random data
Initializing database '/var/kerberos/krb5kdc/principal' for realm 'FAYSON.COM',
master key name 'K/[email protected]'
You will be prompted for the database Master Password.
It is important that you NOT FORGET this password.
Enter KDC database master key:
Re-enter KDC database master key to verify:
此处需要输入Kerberos数据库的密码。
6.创建Kerberos的管理账号
[root@ip-172-31-6-148 ~]# kadmin.local
Authenticating as principal fayson/[email protected] with password.
kadmin.local: addprinc admin/[email protected]
WARNING: no policy specified for admin/[email protected]; defaulting to no policy
Enter password for principal "admin/[email protected]":
Re-enter password for principal "admin/[email protected]":
Principal "admin/[email protected]" created.
kadmin.local: exit
[root@ip-172-31-6-148 ~]#
标红部分为Kerberos管理员账号,需要输入管理员密码。
7.将Kerberos服务添加到自启动服务,并启动krb5kdc和kadmin服务
[root@ip-172-31-6-148~]# chkconfig krb5kdc on
[root@ip-172-31-6-148 ~]# chkconfig kadmin on
[root@ip-172-31-6-148 ~]# service krb5kdc start
Starting Kerberos 5 KDC: [ OK ]
[root@ip-172-31-6-148 ~]# service kadmin start
Starting Kerberos 5 Admin Server: [ OK ]
[root@ip-172-31-6-148 ~]#
8.测试Kerberos的管理员账号
[root@ip-172-31-6-148 ~]# kinit admin/[email protected]
Password for admin/[email protected]:
[root@ip-172-31-6-148 ~]# klist
Ticket cache: FILE:/tmp/krb5cc_0
Default principal: admin/[email protected]
Valid starting Expires Service principal
09/05/17 16:39:17 09/06/17 16:39:17 krbtgt/[email protected]
renew until 09/12/17 16:39:17
[root@ip-172-31-6-148 ~]#
9.为集群安装所有Kerberos客户端,包括Cloudera Manager
[root@ip-172-31-6-148 cdh-shell-master]# yum -y install krb5-libs krb5-workstation
10.在Cloudera Manager Server服务器上安装额外的包
[root@ip-172-31-6-148cdh-shell-master]# yum -y install openldap-clients
11.将KDC Server上的krb5.conf文件拷贝到所有Kerberos客户端
[root@ip-172-31-6-148cdh-shell-master]# scp -r /etc/krb5.conf [email protected]:/etc/
此处使用脚本进行拷贝
[root@ip-172-31-6-148cdh-shell-master]# sh b.sh node.list /etc/krb5.conf /etc/
krb5.conf 100% 451 0.4KB/s 00:00
krb5.conf 100% 451 0.4KB/s 00:00
krb5.conf 100% 451 0.4KB/s 00:00
krb5.conf 100% 451 0.4KB/s 00:00
[root@ip-172-31-6-148 cdh-shell-master]#
3.CDH集群启用Kerberos
1.在KDC中给Cloudera Manager添加管理员账号
[root@ip-172-31-6-148 cdh-shell-bak]# kadmin.local
Authenticating as principal admin/[email protected] with password.
kadmin.local: addprinc cloudera-scm/[email protected]
WARNING: no policy specified for cloudera-scm/[email protected]; defaulting to no policy
Enter password for principal "cloudera-scm/[email protected]":
Re-enter password for principal "cloudera-scm/[email protected]":
Principal "cloudera-scm/[email protected]" created.
kadmin.local: exit
[root@ip-172-31-6-148 cdh-shell-bak]#
2.进入Cloudera Manager的“管理”-> “安全”界面
3.选择“启用Kerberos”,进入如下界面
确保如下列出的所有检查项都已完成
4.点击“继续”,配置相关的KDC信息,包括类型、KDC服务器、KDC Realm、加密类型以及待创建的Service Principal(hdfs,yarn,,hbase,hive等)的更新生命期等
5.点击“继续”
6.不建议让Cloudera Manager来管理krb5.conf, 点击“继续”
7.输入Cloudera Manager的Kerbers管理员账号,必须和之前创建的账号一致,点击“继续”
8.等待启用Kerberos完成,点击“继续”
9.点击“继续”
10.勾选重启集群,点击“继续”
11.等待集群重启成功,点击“继续”
至此已成功启用Kerberos。
4.Kerberos使用
使用fayson用户运行MapReduce任务及操作Hive,需要在集群所有节点创建fayson用户。
1.使用kadmin创建一个fayson的principal
[root@ip-172-31-6-148 cdh-shell-bak]# kadmin.local
Authenticating as principal admin/[email protected] with password.
kadmin.local: addprinc [email protected]
WARNING: no policy specified for [email protected]; defaulting to no policy
Enter password for principal "[email protected]":
Re-enter password for principal "[email protected]":
Principal "[email protected]" created.
kadmin.local: exit
[root@ip-172-31-6-148 cdh-shell-bak]#
2.使用fayson用户登录Kerberos
[root@ip-172-31-6-148 cdh-shell-bak]# kdestroy
[root@ip-172-31-6-148 cdh-shell-bak]# kinit fayson
Password for [email protected]:
[root@ip-172-31-6-148 cdh-shell-bak]# klist
Ticket cache: FILE:/tmp/krb5cc_0
Default principal: [email protected]
Valid starting Expires Service principal
09/05/17 17:19:08 09/06/17 17:19:08 krbtgt/[email protected]
renew until 09/12/17 17:19:08
[root@ip-172-31-6-148 cdh-shell-bak]#
3.运行MapReduce作业
[root@ip-172-31-6-148~]# hadoop jar /opt/cloudera/parcels/CDH/lib/hadoop-0.20-mapreduce/hadoop-examples.jar pi 10 1
...
Starting Job
17/09/02 20:10:43 INFO mapreduce.Job: Running job: job_1504383005209_0001
17/09/02 20:10:56 INFO mapreduce.Job: Job job_1504383005209_0001 running in ubermode : false
17/09/02 20:10:56 INFO mapreduce.Job: map0% reduce 0%
17/09/02 20:11:09 INFO mapreduce.Job: map20% reduce 0%
17/09/02 20:11:12 INFO mapreduce.Job: map40% reduce 0%
17/09/02 20:11:13 INFO mapreduce.Job: map50% reduce 0%
17/09/02 20:11:15 INFO mapreduce.Job: map60% reduce 0%
17/09/02 20:11:16 INFO mapreduce.Job: map70% reduce 0%
17/09/02 20:11:19 INFO mapreduce.Job: map80% reduce 0%
17/09/02 20:11:21 INFO mapreduce.Job: map100% reduce 0%
17/09/02 20:11:26 INFO mapreduce.Job: map100% reduce 100%
17/09/02 20:11:26 INFO mapreduce.Job: Job job_1504383005209_0001 completedsuccessfully
4.使用beeline连接hive进行测试
[root@ip-172-31-6-148 cdh-shell-bak]# beeline
Beeline version 1.1.0-cdh5.12.1 by Apache Hive
beeline> !connect jdbc:hive2://localhost:10000/;principal=hive/[email protected]
...
Transaction isolation: TRANSACTION_REPEATABLE_READ
0: jdbc:hive2://localhost:10000/> show tables;
...
INFO : OK
+-------------+--+
| tab_name |
+-------------+--+
| test_table |
+-------------+--+
1 row selected (0.194 seconds)
0: jdbc:hive2://localhost:10000/> select * from test_table;
...
INFO : OK
+----------------+----------------+--+
| test_table.s1 | test_table.s2 |
+----------------+----------------+--+
| 4 | lisi |
| 1 | test |
| 2 | fayson |
| 3 | zhangsan |
+----------------+----------------+--+
4 rows selected (0.144 seconds)
0: jdbc:hive2://localhost:10000/>
运行Hive MapReduce作业
0: jdbc:hive2://localhost:10000/> select count(*) from test_table;
...
INFO : OK
+------+--+
| _c0 |
+------+--+
| 4 |
+------+--+
1 row selected (35.779 seconds)
0: jdbc:hive2://localhost:10000/>
5.常见问题
1.使用Kerberos用户身份运行MapReduce作业报错
main : run as user is fayson
main : requested yarn user is fayson
Requested user fayson is not whitelisted and has id 501,whichis below the minimum allowed 1000
Failing this attempt. Failing the application.
17/09/02 20:05:04 INFO mapreduce.Job: Counters: 0
Job Finished in 6.184 seconds
java.io.FileNotFoundException: File does not exist:hdfs://ip-172-31-6-148:8020/user/fayson/QuasiMonteCarlo_1504382696029_1308422444/out/reduce-out
at org.apache.hadoop.hdfs.DistributedFileSystem$20.doCall(DistributedFileSystem.java:1266)
at org.apache.hadoop.hdfs.DistributedFileSystem$20.doCall(DistributedFileSystem.java:1258)
at org.apache.hadoop.fs.FileSystemLinkResolver.resolve(FileSystemLinkResolver.java:81)
at org.apache.hadoop.hdfs.DistributedFileSystem.getFileStatus(DistributedFileSystem.java:1258)
at org.apache.hadoop.io.SequenceFile$Reader.
at org.apache.hadoop.examples.QuasiMonteCarlo.run(QuasiMonteCarlo.java:354)
at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:70)
at org.apache.hadoop.examples.QuasiMonteCarlo.main(QuasiMonteCarlo.java:363)
at sun.reflect.NativeMethodAccessorImpl.invoke0(NativeMethod)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.hadoop.util.ProgramDriver$ProgramDescription.invoke(ProgramDriver.java:71)
at org.apache.hadoop.util.ProgramDriver.run(ProgramDriver.java:144)
at org.apache.hadoop.examples.ExampleDriver.main(ExampleDriver.java:74)
at sun.reflect.NativeMethodAccessorImpl.invoke0(NativeMethod)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
atorg.apache.hadoop.util.RunJar.run(RunJar.java:221)
at org.apache.hadoop.util.RunJar.main(RunJar.java:136)
问题原因:是由于Yarn限制了用户id小于10000的用户提交作业;
解决方法:修改Yarn的min.user.id来解决