一道经典的搜索,回溯题吧。
深搜有点想树的前序遍历。方向数组的顺序在这里非常重要。要优先左上方向。
还有今天发现以前一直理解错误的一个地方,只要是dfs搜到了目标就能输出那条路径,没有想bfs那样麻烦。
http://poj.org/problem?id=2488
A Knight's Journey
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 41240 Accepted: 14034
Description
Background
The knight is getting bored of seeing the same black and white squares again and again and has decided to make a journey
around the world. Whenever a knight moves, it is two squares in one direction and one square perpendicular to this. The world of a knight is the chessboard he is living on. Our knight lives on a chessboard that has a smaller area than a regular 8 * 8 board, but it is still rectangular. Can you help this adventurous knight to make travel plans?
Problem
Find a path such that the knight visits every square once. The knight can start and end on any square of the board.
Input
The input begins with a positive integer n in the first line. The following lines contain n test cases. Each test case consists of a single line with two positive integers p and q, such that 1 <= p * q <= 26. This represents a p * q chessboard, where p describes how many different square numbers 1, . . . , p exist, q describes how many different square letters exist. These are the first q letters of the Latin alphabet: A, . . .
Output
The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the lexicographically first path that visits all squares of the chessboard with knight moves followed by an empty line. The path should be given on a single line by concatenating the names of the visited squares. Each square name consists of a capital letter followed by a number.
If no such path exist, you should output impossible on a single line.
Sample Input
3
1 1
2 3
4 3
Sample Output
Scenario #1:
A1
Scenario #2:
impossible
Scenario #3:
A1B3C1A2B4C2A3B1C3A4B2C4
#include
#include
#include
using namespace std;
int mark[30][30],n,m,B,path[1005][2],j;
int F[8][2]= {{-2, -1}, {-2, 1}, {-1, -2}, {-1, 2},{1, -2}, {1, 2}, {2, -1}, {2, 1}};//没有做这题还真的想不到方向数组还能决定路径的顺序。注意我是y,x的方向。
void dfs(int x,int y,int t)
{
if(B)
return;
path[t][0]=x;///记住寻找的路径,不用注意位置,不然会记错
path[t][1]=y;///
if(t==n*m)
{
B=1;
return;
}
mark[x][y]=1;
for(int i=0; i<8; i++)
{
int r=F[i][1]+x;
int c=F[i][0]+y;
if(r>0&&r<=n&&c>0&&c<=m&&!mark[r][c])
{
dfs(r,c,t+1);
}
}
mark[x][y]=0;
}
int main()
{
int T,t;
scanf("%d",&T);
for(t=1; t<=T; t++)
{
memset(path,0,sizeof(path));
j=1;
memset(mark,0,sizeof(mark));
scanf("%d %d",&n,&m);
B=0;
dfs(1,1,1);
cout<<"Scenario #"<
代码二:
#include
#include
#include
using namespace std;
int mark[30][30],n,m,B,path[1005][2],j;
int F[8][2]= {{-2, -1}, {-2, 1}, {-1, -2}, {-1, 2},{1, -2}, {1, 2}, {2, -1}, {2, 1}};//这里在尝试方向数组的顺序,yx
int F[8][2]= {{-1,-2},{1,-2},{-2, -1},{2, -1},{-2, 1},{2, 1}, {-1, 2},{1, 2}};//xy
int F[8][2]= {{1,-2},{-1,-2},{2, -1},{-2, -1},{2, 1},{-2, 1}, {1, 2},{-1, 2}};
void dfs(int x,int y,int t)
{
if(B)
return;
if(t==n*m)
{
B=1;
return;
}
for(int i=0; i<8; i++)
{
int r=F[i][0]+x;
int c=F[i][1]+y;
if(r>0&&r<=n&&c>0&&c<=m&&!mark[r][c])
{
mark[r][c]=1;
dfs(r,c,t+1);
mark[r][c]=0;
if(B)
{
path[t+1][0]=r;
path[t+1][1]=c;
return;
}
}
}
}
int main()
{
int T,t;
scanf("%d",&T);
for(t=1; t<=T; t++)
{
memset(path,0,sizeof(path));
j=1;
memset(mark,0,sizeof(mark));
scanf("%d %d",&n,&m);
B=0;
path[1][0]=1;
path[1][1]=1;
mark[1][1]=1;
dfs(1,1,1);
cout<<"Scenario #"<