- NLP_jieba中文分词的常用模块
Hiweir ·
NLP_jieba的使用自然语言处理中文分词人工智能nlp
1.jieba分词模式(1)精确模式:把句子最精确的切分开,比较适合文本分析.默认精确模式.(2)全模式:把句子中所有可能成词的词都扫描出来,cut_all=True,缺点:速度快,不能解决歧义(3)paddle:利用百度的paddlepaddle深度学习框架.简单来说就是使用百度提供的分词模型.use_paddle=True.(4)搜索引擎模式:在精确模式的基础上,对长词再进行切分,提高召回率,
- 三国演义python分析系统_Python之三国演义(上)
weixin_40002692
三国演义python分析系统
一、设计实现详细说明1.1任务详细描述以中国四大名著之一——《三国演义》为蓝本,结合python数据分析知识进行本次的文本分析。《三国演义》全书共120回。本次的分析主要基于统计分析、文本挖掘等知识。1.2设计思路详细描述数据准备、数据预处理、分词等全书各个章节的字数、词数、段落等相关方面的关系整体词频和词云的展示全书各个章节进行聚类分析并可视化,主要进行了根据IF-IDF的系统聚类和根据词频的L
- NLP面试题(9月4日笔记)
好好学习Py
自然语言处理自然语言处理笔记人工智能
常见的分词方法分词是将连续的子序列按照一定的规则进行重新组合形成词序列的过程,是NLP领域内最基础的内容。常见的分词方法有jieba分词,jieba分词支持多种分词模模式:精确模式,全模式,搜索引擎模式。1)精确模式:将句子最精确的进行切分,适合文本分析,在日常工作中最为常用;2)全模式:将句子中所有可以成词的词语都扫描出来,速度非常快,但不能消除歧义。3)搜索引擎模式:在精确模式的基础上,对长词
- 批判和展望:Python文本分析在“企业数字化转型”的“滥用”越走越远,远离初心
Python_魔力猿
python云计算开发语言
开文第一问:企业数字化转型真的可以用Python文本分析度量吗?在回答目前大行其道的Python文本分析法能否测算企业数字化转型的问题之前,我们有必要简单地熟悉一下企业数字化转型的基本定义。企业数字化转型是什么?数字化转型是数字技术与产业发展的深度融合,将数字技术的运用贯穿于企业经营管理的方方面面,企业数字化转型的本质是通过整合使用数字技术对企业经营活动进行重要变革的过程。其次,企业数字化转型的程
- 文本分析之关键词提取(TF-IDF算法)
富士达幸运星
人工智能机器学习tf-idf
文本分析之关键词提取:解锁信息精髓的钥匙在信息爆炸的时代,我们每天都被海量的文本数据所包围。无论是新闻报道、学术论文、社交媒体帖子,还是电子邮件和聊天记录,文本都是我们获取知识和信息的主要载体。然而,面对如此庞大的数据量,如何快速准确地提取出其中的关键信息,成为了文本分析领域的一个重要课题。关键词提取,作为文本分析的核心技术之一,正是帮助我们解锁文本信息精髓的关键工具。一、什么是关键词提取?关键词
- 基于 LDA SS-NMF 的文本主题分析可视化分析系统 毕业设计 附完整代码
程序员奇奇
计算机毕设课程设计python人工智能LDA主题分析
摘要在机器学习和自然语言处理领域中,主题模型(TopicModel)是在一系列文档中发现抽象主题的一种统计模型,并被广泛地应用于文本文档集合的分析。近年来,各种主题建模技术,特别是概率图建模技术,取得了显著的进展,其中隐含狄利克雷分布(LDA)等最先进的技术已经成功地应用于可视化文本分析。然而,大多数基于概率模型的方法在多次运行的一致性和经验收敛性方面存在缺陷。此外,由于公式和算法的复杂性,LDA
- Azure和Transformers的详细解释
漫天飞舞的雪花
azuremicrosoftpython
AzureAI是微软提供的人工智能(AI)解决方案的集合,旨在帮助开发人员、数据科学家和企业轻松构建和部署智能应用程序。以下是对AzureAI各个方面的详细解释:AzureAI主要组件AzureCognitiveServices(认知服务):计算视觉:包括图像识别、物体检测、人脸识别以及图像标注等。语音服务:包括语音识别、语音合成、说话人识别和语音翻译等。语言理解服务:包括文本分析、语言翻译、情感
- 学习笔记 | 文件处理grep、awk、sed这三个命令
大虎牙
#Linuxgrepawksed
文件处理grep、awk、sed这三个命令必知必会1)grepgrep(globalsearchregularexpression(RE)andprintouttheline,全面搜索正则表达式并把行打印出来)是一种强大的文本搜索工具,它能使用正则表达式搜索文本,并把匹配的行打印出来。常用来在结果中搜索特定的内容。2)awkawk是一个强大的文本分析工具,相对于grep的查找,sed的编辑,awk
- 自然语言处理(NLP)与机器学习:深度探索两者的关系
听忆.
自然语言处理机器学习人工智能
自然语言处理(NLP)与机器学习:深度探索两者的关系1.自然语言处理(NLP)的概述NLP的主要任务包括:2.机器学习(ML)的概述机器学习的主要类型包括:3.NLP与机器学习的关系1.机器学习驱动NLP任务2.深度学习与NLP的结合4.NLP和ML的相互促进5.挑战与未来展望边走、边悟迟早会好自然语言处理(NLP)与机器学习(ML)有着密切的关系,二者结合在一起可以实现自动化文本分析、语音识别、
- 文本分析之关键词提取(TF-IDF算法)
SEVEN-YEARS
tf-idf
键词提取是自然语言处理中的一个重要步骤,可以帮助我们理解文本的主要内容。TF-IDF(TermFrequency-InverseDocumentFrequency)是一种常用的关键词提取方法,它基于词频和逆文档频率的概念来确定词语的重要性。准备工作首先,我们需要准备一些工具和库,包括Pandas、jieba(结巴分词)、sklearn等。Pandas:用于数据处理。jieba:用于中文分词。skl
- Linux Shell文本处理
Kali与编程~
LinuxShell入门到高级linuxphp数据库
预计更新1:基础知识简介和安装基本命令变量和环境变量2:流程控制条件语句循环语句函数3:文件处理文件读写文件权限和所有权文件搜索和替换4:网络和进程网络通信进程管理信号处理5:文本处理正则表达式文本分析和处理生成报告和日志6:用户界面命令行参数和选项菜单和交互式界面图形界面7:系统管理系统信息和监控定时任务和计划任务系统备份和恢复8:数据库操作数据库连接和查询数据库备份和恢复数据库管理和优化9:安
- 【Rust光年纪】深度探索:Rust语言中的文本分析与自然语言处理库综述
friklogff
Rust光年纪easyui前端javascript
内容分析从未如此简单!探索Rust语言文本处理库的奥秘前言在当今信息爆炸的时代,文本分析和自然语言处理技术变得愈发重要。Rust语言作为一种快速、安全、并发的编程语言,也逐渐走进了这一领域。本文将介绍几个用于Rust语言的文本分析和自然语言处理库,帮助读者更好地理解和应用这些工具。欢迎订阅专栏:Rust光年纪文章目录内容分析从未如此简单!探索Rust语言文本处理库的奥秘前言1.text_analy
- 探索Ruby的自然语言处理宝库:文本魔法的艺术
2401_85743969
ruby自然语言处理开发语言
标题:探索Ruby的自然语言处理宝库:文本魔法的艺术在人工智能的浪潮中,自然语言处理(NLP)成为了连接人类语言与机器理解的桥梁。Ruby,作为一种优雅而富有表现力的编程语言,拥有一系列强大的NLP库,它们使得文本分析、情感分析、机器翻译等任务变得简单而高效。本文将深入探索Ruby世界中的一些顶尖NLP库,并展示如何使用这些工具来执行实际的NLP任务。RubyNLP库的魔力Ruby的自然语言处理库
- 深入理解LDA主题模型及其在文本分析中的应用
小高要坚强
python信息可视化matplotlib算法分类
深入理解LDA主题模型及其在文本分析中的应用在自然语言处理领域,主题模型是一种强大的工具,能够自动发现文档集中的潜在主题。在大规模文本数据分析中,LatentDirichletAllocation(LDA)是最受欢迎的主题模型之一。LDA的核心目标是从文档集中提取不同的主题,并确定每篇文档属于这些主题的概率分布。本文将详细介绍LDA主题模型的原理、如何使用Python实现LDA,并演示如何将其应用
- jieba安装和使用教程
Cachel wood
自然语言处理nlpwindows开发语言jieba知识图谱neo4j人工智能python
文章目录jieba安装自定义词典关键词提取词性标注jieba安装pipinstalljiebajieba常用的三种模式:精确模式,试图将句子最精确地切开,适合文本分析;全模式,把句子中所有的可以成词的词语都扫描出来,速度非常快,但是不能解决歧义;搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。可使用jieba.cut和jieba.cut_for_search方法
- SPSSAU【文本分析】|我的词库
spssau
人工智能文本分析文本挖掘
我的词库文本分析时,可能涉及到一些新词,比如‘内卷’,这个词很可能在词典中并未出现过,词库也不认识它。但研究者自己认识它,此时可将该词纳入到新词词库中,让系统统计词频等信息时也对该词进行统计。当然还有一些停用词,比如‘好了’,这个词没有实际的意义没有统计词频等必要,此时可对该词设置为停用词。除此之外,还可设置情感词,比如:‘元宇宙’可能是个正向词(也可能是负向情感,由研究者决定),那么可自主设置其
- SPSSAU【文本分析】|LDA主题分析
spssau
人工智能文本分析文本挖掘
LDA主题分析LDA主题分析是一种提取出文本数据核心主题的模型,其可将整份数据文档的信息提取成几个主题,并且标题出主题与关键词之间的权重情况,用于识别主题的具体实际意义,除此之外,LDA主题分析涉及到可视化展示和图形交互等,接下来将具体进行说明。进行LDA主题分析时,首先需要确定主题个数(理论上有确定主题个数的方式,但实际研究分析时,通常是研究者结合实际意义情况来确定主题个数,通常主题个数介于2~
- SPSSAU【文本分析】|词云、词定位等
spssau
人工智能文本分析文本挖掘数据分析
词云分析等文本分析模块中,最重要和最基础的为展示分词结果,通常是使用词云进行展示。在‘词云分析等’中,SPSSAU提供四种功能,分别是词云分析、自定义词云、词定位和tf-idf,本文档使用‘体验DEMO数据’,其来源于2023年12月住建委的“建设要闻”栏目下面41条新闻全文内容,共129kb。接下来说明将基于该数据进行展示和说明。词云分析进入文本分析时,首先可以看到词云结果,本案例时结果如下:词
- SPSSAU【文本分析】|文本聚类
spssau
支持向量机机器学习人工智能
SPSSAU共提供两种文本聚类方式,分别是按词聚类和按行聚类。按词聚类是指将需要分析的关键词进行聚类分析,并且进行可视化展示,即针对关键词进行聚类,此处关键词可以自由选择。按行聚类分析是指针对以‘行’为单位进行聚类分析,将原始文本中多行数据聚为几个类别,并且可将具体聚类类别信息进行下载等。按词聚类分析按词聚类分析操作如下图:默认情况下,系统会将词频靠前的20个关键词提取,并且得到其词向量值,并且其
- 自然语言处理入门:使用Python和NLTK进行文本预处理
Evaporator Core
深度学习深度学习pythontensorflow
文章标题:自然语言处理入门:使用Python和NLTK进行文本预处理简介自然语言处理(NLP)是人工智能领域的一个重要分支,它致力于使计算机能够理解、分析和生成人类语言。本文将介绍如何使用Python编程语言和NLTK(NaturalLanguageToolkit)库进行文本预处理,为后续的文本分析和机器学习任务做准备。1.准备工作首先,确保你已经安装了Python和NLTK库。然后,我们需要准备
- 【1105】备课备什么
杜香开花2008
听干老师备课第一讲有感教了22年的书,最近四五年也特别重视学习,在我们这个十八线的小县城,自认为比较爱学习的人,可是今天听了干老师的文本分析、解读,以及对教学框架设计。我只有一个感受,我简直怀疑自己的教学能力了,自己的教学可能连合格也算不上吧。关于备课有几点感触:1.备课要备大概念2022版新课标颁布后,在加上当前双减背景下,教育必将会新来一场新的变革。真正好的教育,我们要带给孩子什么,不仅是知识
- 什么是jieba?
zg1g
easyui前端javascriptecmascript前端框架
简介jieba是一个流行的中文分词工具,它能够将一段文本切分成有意义的词语。它是目前Python中最常用的中文分词库之一,具有简单易用、高效准确的特点。该库能够处理多种文本分析任务,如情感分析、关键词提取、文本分类等。安装在使用jieba库之前,需要先安装它。可以通过pip命令来进行安装:pip install jieba分词方法jieba库提供了三种分词方法:精确模式、全模式和搜索引擎模式。精确
- Shell之awk
b2105859
LinuxlinuxShell
awk是什么AWK是一种处理文本文件的语言,是一个强大的文本分析工具。语法awk[选项参数]‘script’var=valuefile(s)或awk[选项参数]-fscriptfilevar=valuefile(s)案例收集log.txt2thisisatest3DoyoulikeawkThis’satest10Thereareorange,apple,mongo#用法一#行匹配语句awk''只能
- Linux CentOS7 awk的反转功能
AWK是一种强大的文本分析工具,在Linux系统中常用于文本处理。然而,AWK本身并没有直接的反转功能,它能做的是通过一些编程技巧来实现文本或字段的反转。下面是一些示例,展示如何使用AWK实现反转功能:反转文本文件的行顺序:如果你需要反转文本文件的行顺序,你可以使用tac命令,而不是awk。但是,如果你坚持使用awk,你可以这样做:awk'{a[i++]=$0}END{for(j=i-1;j>=0
- C++课程设计:单词统计器
Feelings◎
c++课程设计easyui
一、项目背景1.1项目来源个人需求:个人在学习、工作或生活中需要对大量文本进行单词统计,以便更好地理解和分析文本内容。教育领域:教师或学生需要对阅读材料中的单词进行统计,以帮助学生提高词汇量和阅读理解能力。自然语言处理:在自然语言处理领域,单词统计是一种基本的文本分析技术,可以用于文本分类、情感分析、机器翻译等应用。数据分析:在数据分析领域,单词统计可以用于分析文本数据的特征,例如词频分布、词汇多
- 【爬虫实战】python文本分析库——Gensim
认真写程序的强哥
爬虫pythonPython爬虫Python学习Python文本分析Gensim开发语言
文章目录01、引言02、主题分析以及文本相似性分析03、关键词提取04、Word2Vec嵌入(词嵌入WordEmbeddings)05、FastText嵌入(子词嵌入SubwordEmbeddings)06、文档向量化01、引言Gensim是一个用于自然语言处理和文本分析的Python库,提供了许多强大的功能,包括文档的相似度计算、关键词提取和文档的主题分析,要开始使用Gensim,您需要安装它,
- 探索NLP中的N-grams:理解,应用与优化
冷冻工厂
程序人生
简介n-gram[1]是文本文档中n个连续项目的集合,其中可能包括单词、数字、符号和标点符号。N-gram模型在许多与单词序列相关的文本分析应用中非常有用,例如情感分析、文本分类和文本生成。N-gram建模是用于将文本从非结构化格式转换为结构化格式的众多技术之一。n-gram的替代方法是词嵌入技术,例如word2vec。N-grams广泛用于文本挖掘和自然语言处理任务。示例通过计算每个唯一的n元语
- HanziNLP 软件包介绍-中文自然语言处理,建模和可视化
miracles_S
自然语言处理nlp中文分词机器学习人工智能python
HanziNLP一个用户友好且易于使用的自然语言处理包,专为中文文本分析、建模和可视化而设计。HanziNLP中的所有功能都支持中文文本,并且非常适用于中文文本分析!如果需要详细信息,欢迎阅读软件包Github主页:https://github.com/samzshi0529/HanziNLP目录1.快速开始1.1相关链接1.2安装与使用1.3交互式仪表板2.字符和词汇计数3.字体管理4.文本分段
- 用Py做文本分析3:制作词云图
凡有言说
1.词频统计在词频统计之前,需要先完成分词工作。因为词频统计是基于分词后所构建的list进行的。importjieba#对小说文本第一回分词word_list=jieba.lcut(chapter.txt[1])word_list[:10]['第一回','','风雪','惊变','钱塘江','浩浩','江水',',','日日夜夜','无穷']1.1使用Pandas统计#使用pandas统计#将数据
- SPSSAU上线文本分析啦|“尔滨”旅游攻略文本分析
spssau
人工智能大数据机器学习
一、什么是文本分析?作为一种新兴的基于定性研究的量化分析方法,文本分析法能够揭示文本的变化与特征,为经典问题的研究提供了新思路。文本分析应用于多个领域,比如在旅游业中,可以通过文本分析去研究旅游形象感知情况,比如在经济学中,可以通过文本分析进行研究目前保险政策等等,以及还有其它领域都会应用到文本分析。二、文本分析常见研究步骤文本分析的常见步骤有五步,包括数据搜集、分词、数据清洗、特征提取以及建模和
- Java实现的简单双向Map,支持重复Value
superlxw1234
java双向map
关键字:Java双向Map、DualHashBidiMap
有个需求,需要根据即时修改Map结构中的Value值,比如,将Map中所有value=V1的记录改成value=V2,key保持不变。
数据量比较大,遍历Map性能太差,这就需要根据Value先找到Key,然后去修改。
即:既要根据Key找Value,又要根据Value
- PL/SQL触发器基础及例子
百合不是茶
oracle数据库触发器PL/SQL编程
触发器的简介;
触发器的定义就是说某个条件成立的时候,触发器里面所定义的语句就会被自动的执行。因此触发器不需要人为的去调用,也不能调用。触发器和过程函数类似 过程函数必须要调用,
一个表中最多只能有12个触发器类型的,触发器和过程函数相似 触发器不需要调用直接执行,
触发时间:指明触发器何时执行,该值可取:
before:表示在数据库动作之前触发
- [时空与探索]穿越时空的一些问题
comsci
问题
我们还没有进行过任何数学形式上的证明,仅仅是一个猜想.....
这个猜想就是; 任何有质量的物体(哪怕只有一微克)都不可能穿越时空,该物体强行穿越时空的时候,物体的质量会与时空粒子产生反应,物体会变成暗物质,也就是说,任何物体穿越时空会变成暗物质..(暗物质就我的理
- easy ui datagrid上移下移一行
商人shang
js上移下移easyuidatagrid
/**
* 向上移动一行
*
* @param dg
* @param row
*/
function moveupRow(dg, row) {
var datagrid = $(dg);
var index = datagrid.datagrid("getRowIndex", row);
if (isFirstRow(dg, row)) {
- Java反射
oloz
反射
本人菜鸟,今天恰好有时间,写写博客,总结复习一下java反射方面的知识,欢迎大家探讨交流学习指教
首先看看java中的Class
package demo;
public class ClassTest {
/*先了解java中的Class*/
public static void main(String[] args) {
//任何一个类都
- springMVC 使用JSR-303 Validation验证
杨白白
springmvc
JSR-303是一个数据验证的规范,但是spring并没有对其进行实现,Hibernate Validator是实现了这一规范的,通过此这个实现来讲SpringMVC对JSR-303的支持。
JSR-303的校验是基于注解的,首先要把这些注解标记在需要验证的实体类的属性上或是其对应的get方法上。
登录需要验证类
public class Login {
@NotEmpty
- log4j
香水浓
log4j
log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, HTML, DATABASE
#log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, ROLLINGFILE, HTML
#console
log4j.appender.STDOUT=org.apache.log4j.ConsoleAppender
log4
- 使用ajax和history.pushState无刷新改变页面URL
agevs
jquery框架Ajaxhtml5chrome
表现
如果你使用chrome或者firefox等浏览器访问本博客、github.com、plus.google.com等网站时,细心的你会发现页面之间的点击是通过ajax异步请求的,同时页面的URL发生了了改变。并且能够很好的支持浏览器前进和后退。
是什么有这么强大的功能呢?
HTML5里引用了新的API,history.pushState和history.replaceState,就是通过
- centos中文乱码
AILIKES
centosOSssh
一、CentOS系统访问 g.cn ,发现中文乱码。
于是用以前的方式:yum -y install fonts-chinese
CentOS系统安装后,还是不能显示中文字体。我使用 gedit 编辑源码,其中文注释也为乱码。
后来,终于找到以下方法可以解决,需要两个中文支持的包:
fonts-chinese-3.02-12.
- 触发器
baalwolf
触发器
触发器(trigger):监视某种情况,并触发某种操作。
触发器创建语法四要素:1.监视地点(table) 2.监视事件(insert/update/delete) 3.触发时间(after/before) 4.触发事件(insert/update/delete)
语法:
create trigger triggerName
after/before 
- JS正则表达式的i m g
bijian1013
JavaScript正则表达式
g:表示全局(global)模式,即模式将被应用于所有字符串,而非在发现第一个匹配项时立即停止。 i:表示不区分大小写(case-insensitive)模式,即在确定匹配项时忽略模式与字符串的大小写。 m:表示
- HTML5模式和Hashbang模式
bijian1013
JavaScriptAngularJSHashbang模式HTML5模式
我们可以用$locationProvider来配置$location服务(可以采用注入的方式,就像AngularJS中其他所有东西一样)。这里provider的两个参数很有意思,介绍如下。
html5Mode
一个布尔值,标识$location服务是否运行在HTML5模式下。
ha
- [Maven学习笔记六]Maven生命周期
bit1129
maven
从mvn test的输出开始说起
当我们在user-core中执行mvn test时,执行的输出如下:
/software/devsoftware/jdk1.7.0_55/bin/java -Dmaven.home=/software/devsoftware/apache-maven-3.2.1 -Dclassworlds.conf=/software/devs
- 【Hadoop七】基于Yarn的Hadoop Map Reduce容错
bit1129
hadoop
运行于Yarn的Map Reduce作业,可能发生失败的点包括
Task Failure
Application Master Failure
Node Manager Failure
Resource Manager Failure
1. Task Failure
任务执行过程中产生的异常和JVM的意外终止会汇报给Application Master。僵死的任务也会被A
- 记一次数据推送的异常解决端口解决
ronin47
记一次数据推送的异常解决
需求:从db获取数据然后推送到B
程序开发完成,上jboss,刚开始报了很多错,逐一解决,可最后显示连接不到数据库。机房的同事说可以ping 通。
自已画了个图,逐一排除,把linux 防火墙 和 setenforce 设置最低。
service iptables stop
- 巧用视错觉-UI更有趣
brotherlamp
UIui视频ui教程ui自学ui资料
我们每个人在生活中都曾感受过视错觉(optical illusion)的魅力。
视错觉现象是双眼跟我们开的一个玩笑,而我们往往还心甘情愿地接受我们看到的假象。其实不止如此,视觉错现象的背后还有一个重要的科学原理——格式塔原理。
格式塔原理解释了人们如何以视觉方式感觉物体,以及图像的结构,视角,大小等要素是如何影响我们的视觉的。
在下面这篇文章中,我们首先会简单介绍一下格式塔原理中的基本概念,
- 线段树-poj1177-N个矩形求边长(离散化+扫描线)
bylijinnan
数据结构算法线段树
package com.ljn.base;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Set;
import java.util.TreeSet;
/**
* POJ 1177 (线段树+离散化+扫描线),题目链接为http://poj.org/problem?id=1177
- HTTP协议详解
chicony
http协议
引言
- Scala设计模式
chenchao051
设计模式scala
Scala设计模式
我的话: 在国外网站上看到一篇文章,里面详细描述了很多设计模式,并且用Java及Scala两种语言描述,清晰的让我们看到各种常规的设计模式,在Scala中是如何在语言特性层面直接支持的。基于文章很nice,我利用今天的空闲时间将其翻译,希望大家能一起学习,讨论。翻译
- 安装mysql
daizj
mysql安装
安装mysql
(1)删除linux上已经安装的mysql相关库信息。rpm -e xxxxxxx --nodeps (强制删除)
执行命令rpm -qa |grep mysql 检查是否删除干净
(2)执行命令 rpm -i MySQL-server-5.5.31-2.el
- HTTP状态码大全
dcj3sjt126com
http状态码
完整的 HTTP 1.1规范说明书来自于RFC 2616,你可以在http://www.talentdigger.cn/home/link.php?url=d3d3LnJmYy1lZGl0b3Iub3JnLw%3D%3D在线查阅。HTTP 1.1的状态码被标记为新特性,因为许多浏览器只支持 HTTP 1.0。你应只把状态码发送给支持 HTTP 1.1的客户端,支持协议版本可以通过调用request
- asihttprequest上传图片
dcj3sjt126com
ASIHTTPRequest
NSURL *url =@"yourURL";
ASIFormDataRequest*currentRequest =[ASIFormDataRequest requestWithURL:url];
[currentRequest setPostFormat:ASIMultipartFormDataPostFormat];[currentRequest se
- C语言中,关键字static的作用
e200702084
C++cC#
在C语言中,关键字static有三个明显的作用:
1)在函数体,局部的static变量。生存期为程序的整个生命周期,(它存活多长时间);作用域却在函数体内(它在什么地方能被访问(空间))。
一个被声明为静态的变量在这一函数被调用过程中维持其值不变。因为它分配在静态存储区,函数调用结束后并不释放单元,但是在其它的作用域的无法访问。当再次调用这个函数时,这个局部的静态变量还存活,而且用在它的访
- win7/8使用curl
geeksun
win7
1. WIN7/8下要使用curl,需要下载curl-7.20.0-win64-ssl-sspi.zip和Win64OpenSSL_Light-1_0_2d.exe。 下载地址:
http://curl.haxx.se/download.html 请选择不带SSL的版本,否则还需要安装SSL的支持包 2. 可以给Windows增加c
- Creating a Shared Repository; Users Sharing The Repository
hongtoushizi
git
转载自:
http://www.gitguys.com/topics/creating-a-shared-repository-users-sharing-the-repository/ Commands discussed in this section:
git init –bare
git clone
git remote
git pull
git p
- Java实现字符串反转的8种或9种方法
Josh_Persistence
异或反转递归反转二分交换反转java字符串反转栈反转
注:对于第7种使用异或的方式来实现字符串的反转,如果不太看得明白的,可以参照另一篇博客:
http://josh-persistence.iteye.com/blog/2205768
/**
*
*/
package com.wsheng.aggregator.algorithm.string;
import java.util.Stack;
/**
- 代码实现任意容量倒水问题
home198979
PHP算法倒水
形象化设计模式实战 HELLO!架构 redis命令源码解析
倒水问题:有两个杯子,一个A升,一个B升,水有无限多,现要求利用这两杯子装C
- Druid datasource
zhb8015
druid
推荐大家使用数据库连接池 DruidDataSource. http://code.alibabatech.com/wiki/display/Druid/DruidDataSource DruidDataSource经过阿里巴巴数百个应用一年多生产环境运行验证,稳定可靠。 它最重要的特点是:监控、扩展和性能。 下载和Maven配置看这里: http
- 两种启动监听器ApplicationListener和ServletContextListener
spjich
javaspring框架
引言:有时候需要在项目初始化的时候进行一系列工作,比如初始化一个线程池,初始化配置文件,初始化缓存等等,这时候就需要用到启动监听器,下面分别介绍一下两种常用的项目启动监听器
ServletContextListener
特点: 依赖于sevlet容器,需要配置web.xml
使用方法:
public class StartListener implements
- JavaScript Rounding Methods of the Math object
何不笑
JavaScriptMath
The next group of methods has to do with rounding decimal values into integers. Three methods — Math.ceil(), Math.floor(), and Math.round() — handle rounding in differen