蚁群算法(Ant Colony Algorithm, ACA)简介及其MATLAB实现

目录

算法概述

ACA算法的数学原理

算法步骤

ACA算法特点

补充:启发式算法

旅行商问题(TSP)

ACA的MATLAB实现


算法概述

模拟蚂蚁觅食行为设计的算法。讲蚂蚁群觅食的特点抽象出来转化成数学描述。

• 蚁群算法(Ant Colony Algorithm, ACA)由Marco Dorigo于1992年在他的博士论文中首次提出。

• 蚂蚁在寻找食物源时,会在其经过的路径上释放一种信息素,并能够感知其它蚂蚁释放的信息素。信息素浓度的大小表征路径的远近,信息素浓度越高,表示对应的路径距离越短

• 通常,蚂蚁会以较大的概率优先选择信息素浓度较高的路径,并释放 一定量的信息素,以增强该条路径上的信息素浓度,这样,会形成一个正反馈。最终,蚂蚁能够找到一条从巢穴到食物源的最佳路径,即距离 最短。

• 生物学家同时发现,路径上的信息素浓度会随着时间的推进而逐渐衰减

• 将蚁群算法应用于解决优化问题,其基本思路为:用蚂蚁的行走路径表示待优化问题的可行解,整个蚂蚁群体的所有路径构成待优化问题的解空间。路径较短的蚂蚁释放的信息素量较多,随着时间的推进,较短 的路径上累积的信息素浓度逐渐增高,选择该路径的蚂蚁个数也愈来愈多。最终,整个蚂蚁会在正反馈的作用下集中到最佳的路径上,此时对应的便是待优化问题的最优解。

类比GA(遗传算法)的交叉、选择、变异,PSO(粒子群算法)的个体、群体极值优化,蚁群算法也有自己的优化策略:正反馈的信息机制、信息素浓度的更新、蚂蚁对能够访问的路径的筛选。

ACA算法的数学原理

蚁群算法(Ant Colony Algorithm, ACA)简介及其MATLAB实现_第1张图片

蚁群算法(Ant Colony Algorithm, ACA)简介及其MATLAB实现_第2张图片

关于蚁群算法中释放信息素的特点,定义了三种模型:

蚁群算法(Ant Colony Algorithm, ACA)简介及其MATLAB实现_第3张图片

第一种模型假设信息素总量一定。信息素浓度和经过路径的长度成反比。

蚁群算法(Ant Colony Algorithm, ACA)简介及其MATLAB实现_第4张图片

第二种模型中不使用经过的总路径,而仅仅使用相邻城市的路径长度。

蚁群算法(Ant Colony Algorithm, ACA)简介及其MATLAB实现_第5张图片

第三种模型更简单,不管距离长短,释放的信息素都一样。

本文下面设计的MATLAB程序,以第一种模型为例。

算法步骤

蚁群算法(Ant Colony Algorithm, ACA)简介及其MATLAB实现_第6张图片

ACA算法特点

• 采用正反馈机制,使得搜索过程不断收敛,最终逼近于最优解;

• 每个个体可以通过释放信息素来改变周围的环境,且每个个体能够感知周围环境的实时变化,个体间通过环境(信息素)进行间接地通讯。对比之下,粒子群优化算法中采用局部最优解、全局最优解的广播来实现通讯。

• 搜索过程采用分布式计算方式,多个个体同时进行并行计算,大大提高了算法的计算能力和运行效率;

启发式的概率搜索方式,不容易陷入局部最优,易于寻找到全局最优解。

ACA中也采用轮盘赌法,和遗传算法中的启发方法一样,即选择最大的概率那个选项继续前进。

补充:启发式算法

现代启发式算法在优化机制方面存在一定的差异,但在优化流程上却具有较大的相似性,均是一种“邻域搜索”结构。算法都是从一个(一组)初始解出发,在算法的关键参数的控制下通过邻域函数产生若干邻域解,按接受准则(确定性、概率性或混沌方式)更新当前状态,而后按关键参数修改准则调整关键参数。如此重复上述搜索步骤直到满足算法的收敛准则,最终得到问题的优化结果。神经网络、禁忌搜索、模拟退火、和ACA,他们都是启发式的搜索方法,共同的基本要素:(1)随机初始可行解;(2)给定一个评价函数(常常与目标函数值有关);(3)邻域,产生新的可行解;(4)选择和接受解得准则;(5)终止准则。

没有启发的算法就是随机搜索的算法,例如遗传算法。后面的博文中会针对这个问题细讲。

旅行商问题(TSP)

• Traveling Salesman Problem, TSP 是一个非常经典的问题

• 在N个城市中各经历一次后再回到出发点,使所经过的路程最短

• 若不考虑方向性和周期性,在给定N的条件下,可能存在的闭合路径可达到1/2*N!数量级。当N较大时,枚举法的计算量之大难以想象。。

• TSP问题经常被视为验证优化算法性能的一个“金标准”。

蚁群算法(Ant Colony Algorithm, ACA)简介及其MATLAB实现_第7张图片

ACA的MATLAB实现

一些重点函数:

• ismember, ~

tf = ismember(A, S) returns a vector the same length as A, containing logical 1 (true) where the elements of A are inthe set S, and logical 0 (false) elsewhere.(判定A中元素是否在S中,返回向量长度与A相同,若判断为yes对应位置为1)

~expr represents a logical NOT operation applied to expression expr.(非,取反操作)

• cumsum

B = cumsum(A) returns the cumulative sum along different dimensions of an array.(求累加和)

• num2str

str = num2str(A) converts array A into a string representation str with roughly four digits of precision and an exponent if required.

• text

text(x,y,'string') adds the string in quotes to the location specified by the point (x,y) x and y must be numbers of class double.(在画图时用到,画出点并添加string说明)

【例】用蚁群算法解决TSP问题

%% I. 清空环境变量
clear all
clc

%% II. 导入数据
load citys_data.mat

%% III. 计算城市间相互距离
n = size(citys,1);
D = zeros(n,n);
for i = 1:n
    for j = 1:n
        if i ~= j
            D(i,j) = sqrt(sum((citys(i,:) - citys(j,:)).^2));
        else
            D(i,j) = 1e-4;  %如果是0会导致矩阵对角线都是0 导致启发函数无穷大 因此取个很小的值    
        end
    end    
end

%% IV. 初始化参数
m = 50;                              % 蚂蚁数量
alpha = 1;                           % 信息素重要程度因子
beta = 5;                            % 启发函数重要程度因子
rho = 0.1;                           % 信息素挥发因子
Q = 1;                               % 常系数
Eta = 1./D;                          % 启发函数
Tau = ones(n,n);                     % 信息素矩阵
Table = zeros(m,n);                  % 路径记录表,每一行代表一个蚂蚁走过的路径
iter = 1;                            % 迭代次数初值
iter_max = 200;                      % 最大迭代次数 
Route_best = zeros(iter_max,n);      % 各代最佳路径       
Length_best = zeros(iter_max,1);     % 各代最佳路径的长度  
Length_ave = zeros(iter_max,1);      % 各代路径的平均长度  

%% V. 迭代寻找最佳路径
while iter <= iter_max
     % 随机产生各个蚂蚁的起点城市
      start = zeros(m,1);
      for i = 1:m
          temp = randperm(n);
          start(i) = temp(1);
      end
      Table(:,1) = start; 
      citys_index = 1:n;
      % 逐个蚂蚁路径选择
      for i = 1:m
          % 逐个城市路径选择
         for j = 2:n
             tabu = Table(i,1:(j - 1));           % 已访问的城市集合(禁忌表)
             allow_index = ~ismember(citys_index,tabu);
             allow = citys_index(allow_index);  % 待访问的城市集合
             P = allow;
             % 计算城市间转移概率
             for k = 1:length(allow)
                 P(k) = Tau(tabu(end),allow(k))^alpha * Eta(tabu(end),allow(k))^beta;
             end
             P = P/sum(P);
             % 轮盘赌法选择下一个访问城市
             Pc = cumsum(P);     
            target_index = find(Pc >= rand); 
            target = allow(target_index(1));
            Table(i,j) = target;
         end
      end
      % 计算各个蚂蚁的路径距离
      Length = zeros(m,1);
      for i = 1:m
          Route = Table(i,:);
          for j = 1:(n - 1)
              Length(i) = Length(i) + D(Route(j),Route(j + 1));
          end
          Length(i) = Length(i) + D(Route(n),Route(1));
      end
      % 计算最短路径距离及平均距离
      if iter == 1
          [min_Length,min_index] = min(Length);
          Length_best(iter) = min_Length;  
          Length_ave(iter) = mean(Length);
          Route_best(iter,:) = Table(min_index,:);
      else
          [min_Length,min_index] = min(Length);
          Length_best(iter) = min(Length_best(iter - 1),min_Length);
          Length_ave(iter) = mean(Length);
          if Length_best(iter) == min_Length
              Route_best(iter,:) = Table(min_index,:);
          else
              Route_best(iter,:) = Route_best((iter-1),:);
          end
      end
      % 更新信息素
      Delta_Tau = zeros(n,n);
      % 逐个蚂蚁计算
      for i = 1:m
          % 逐个城市计算
          for j = 1:(n - 1)
              Delta_Tau(Table(i,j),Table(i,j+1)) = Delta_Tau(Table(i,j),Table(i,j+1)) + Q/Length(i);
          end
          Delta_Tau(Table(i,n),Table(i,1)) = Delta_Tau(Table(i,n),Table(i,1)) + Q/Length(i);
      end
      Tau = (1-rho) * Tau + Delta_Tau;
    % 迭代次数加1,清空路径记录表
    iter = iter + 1;
    Table = zeros(m,n);
end

%% VI. 结果显示
[Shortest_Length,index] = min(Length_best);
Shortest_Route = Route_best(index,:);
disp(['最短距离:' num2str(Shortest_Length)]);
disp(['最短路径:' num2str([Shortest_Route Shortest_Route(1)])]);

%% VII. 绘图
figure(1)
plot([citys(Shortest_Route,1);citys(Shortest_Route(1),1)],...
     [citys(Shortest_Route,2);citys(Shortest_Route(1),2)],'o-');
grid on
for i = 1:size(citys,1)
    text(citys(i,1),citys(i,2),['   ' num2str(i)]);
end
text(citys(Shortest_Route(1),1),citys(Shortest_Route(1),2),'       起点');
text(citys(Shortest_Route(end),1),citys(Shortest_Route(end),2),'       终点');
xlabel('城市位置横坐标')
ylabel('城市位置纵坐标')
title(['蚁群算法优化路径(最短距离:' num2str(Shortest_Length) ')'])
figure(2)
plot(1:iter_max,Length_best,'b',1:iter_max,Length_ave,'r:')
legend('最短距离','平均距离')
xlabel('迭代次数')
ylabel('距离')
title('各代最短距离与平均距离对比')

 

你可能感兴趣的:(机器学习算法MATLAB实例)