Spark-TaskSchedulerImpl,TaskSetManager,Pool 源码解析

Spark-TaskSchedulerImpl,TaskSetManager,Pool 源码解析

  • class Pool
  • TaskSchedulerImpl
    • class TaskSchedulerImpl
    • object TaskSchedulerImpl
  • TaskSetManager
    • class TaskSetManager
    • object TaskSetManager
  • TaskResultGetter

class Pool

管理 多个 TaskSetManager,一般会在 TaskSchedulerImpl 中使用,所以大多数的方法是在 TaskSchedulerImpl 中被调用的。
下面来看看源码:

private[spark] class Pool(
    val poolName: String, //poll 名称
    val schedulingMode: SchedulingMode, //调度模式 公平型和先入先出型
    initMinShare: Int,//权重
    initWeight: Int)//计算资源中的cpu核数
  extends Schedulable with Logging {

  val schedulableQueue = new ConcurrentLinkedQueue[Schedulable] //任务队列
  val schedulableNameToSchedulable = new ConcurrentHashMap[String, Schedulable] //保存调度 任务的名称和任务的 map
  val weight = initWeight
  val minShare = initMinShare
  var runningTasks = 0 //目前这个 数量 只是统计 正在运行的 任务数
  val priority = 0

  // A pool's stage id is used to break the tie in scheduling.
  var stageId = -1
  val name = poolName
  var parent: Pool = null
//根据 调度模式 返回 调度算法
  private val taskSetSchedulingAlgorithm: SchedulingAlgorithm = {
    schedulingMode match {
      case SchedulingMode.FAIR =>
        new FairSchedulingAlgorithm()
      case SchedulingMode.FIFO => //默认 FIFO
        new FIFOSchedulingAlgorithm()
      case _ =>
        val msg = s"Unsupported scheduling mode: $schedulingMode. Use FAIR or FIFO instead."
        throw new IllegalArgumentException(msg)
    }
  }
// add 一个 TaskSetManager
  //Schedulable 的一个子类 是 TaskSetManager
  //这个方法会在 FIFOSchedulableBuilder 中 调用的,那么最终的 在TaskSchedulerImpl的submitTasks的方法中调用这个 addSchedulable 方法
  override def addSchedulable(schedulable: Schedulable) {
    require(schedulable != null)
    schedulableQueue.add(schedulable) //加到任务队列里面去
    schedulableNameToSchedulable.put(schedulable.name, schedulable) //加到 任务map中去
    schedulable.parent = this //更新 schedulable.parent
  }
//移除一个 TaskSetManager
  //这个方法会在 TaskSchedulerImpl的 taskSetFinished方法中 通过manager.parent.removeSchedulable(manager) 调用,因为在 addSchedulable方法中 设置schedulable.parent = this
  override def removeSchedulable(schedulable: Schedulable) {
    schedulableQueue.remove(schedulable)
    schedulableNameToSchedulable.remove(schedulable.name)
  }
//通过 任务Name 获取任务实体 首先从 任务map中获取,否则从 任务队列中 获取
  override def getSchedulableByName(schedulableName: String): Schedulable = {
    if (schedulableNameToSchedulable.containsKey(schedulableName)) {
      return schedulableNameToSchedulable.get(schedulableName)
    }
    for (schedulable <- schedulableQueue.asScala) {
      val sched = schedulable.getSchedulableByName(schedulableName)
      if (sched != null) {
        return sched
      }
    }
    null
  }
//executor 丢失处理
  //在 TaskSchedulerImpl的removeExecutor中会调用这个方法
  override def executorLost(executorId: String, host: String, reason: ExecutorLossReason) {
    schedulableQueue.asScala.foreach(_.executorLost(executorId, host, reason)) //依次处理 TaskSetManager 中的这个 executorId 的任务
  }
//检查 推测 任务,只要 任务队列里面 有一个 任务满足 则返回true
  //这个方法会在 TaskSchedulerImpl中的checkSpeculatableTasks中调用,并且是一个定时任务
  override def checkSpeculatableTasks(minTimeToSpeculation: Int): Boolean = {
    var shouldRevive = false
    for (schedulable <- schedulableQueue.asScala) {
      shouldRevive |= schedulable.checkSpeculatableTasks(minTimeToSpeculation) //这个方法是 TaskSetManager
    }
    shouldRevive
  }
//获取 sorted task
  //在 TaskSchedulerImpl的resourceOffers中会调用这个方法
  override def getSortedTaskSetQueue: ArrayBuffer[TaskSetManager] = {
    val sortedTaskSetQueue = new ArrayBuffer[TaskSetManager]
    val sortedSchedulableQueue =
      schedulableQueue.asScala.toSeq.sortWith(taskSetSchedulingAlgorithm.comparator) //根据 调度算法 返回 排序后的 taskSetManager
    for (schedulable <- sortedSchedulableQueue) {
      sortedTaskSetQueue ++= schedulable.getSortedTaskSetQueue
    }
    sortedTaskSetQueue
  }
//增加  running的 task 数量
  //TaskSetManager中调用
  def increaseRunningTasks(taskNum: Int) {
    runningTasks += taskNum
    if (parent != null) {
      parent.increaseRunningTasks(taskNum)
    }
  }
  //减少  running的 task 数量
  //TaskSetManager中调用
  def decreaseRunningTasks(taskNum: Int) {
    runningTasks -= taskNum
    if (parent != null) {
      parent.decreaseRunningTasks(taskNum)
    }
  }
}

TaskSchedulerImpl

class TaskSchedulerImpl

主要管理Task的调度,所以会在DAGScheduler中使用,在一个Task的执行过程中 需要和executos交互,所以在本类的initialize方法中会传入SchedulerBackend用来和executos交互
源码解析如下:

//管理Task的调度,所以会在DAGScheduler中使用,在一个Task的执行过程中 需要和executos交互,所以在本类的initialize方法中会传入SchedulerBackend用来和executos交互
private[spark] class TaskSchedulerImpl(
    val sc: SparkContext,
    val maxTaskFailures: Int, //默认是4
    isLocal: Boolean = false)
  extends TaskScheduler with Logging {

  import TaskSchedulerImpl._

  def this(sc: SparkContext) = {
    this(sc, sc.conf.get(config.MAX_TASK_FAILURES)) //默认是 4
  }

  // Lazily initializing blacklistTrackerOpt to avoid getting empty ExecutorAllocationClient,
  // because ExecutorAllocationClient is created after this TaskSchedulerImpl.
  private[scheduler] lazy val blacklistTrackerOpt = maybeCreateBlacklistTracker(sc) //默认关闭的话 是 None

  val conf = sc.conf

  // How often to check for speculative tasks
  //推测任务 间隔 默认 100ms
  val SPECULATION_INTERVAL_MS = conf.getTimeAsMs("spark.speculation.interval", "100ms")

  // Duplicate copies of a task will only be launched if the original copy has been running for
  // at least this amount of time. This is to avoid the overhead of launching speculative copies
  // of tasks that are very short.
  val MIN_TIME_TO_SPECULATION = 100

  private val speculationScheduler = //推测 scheduler 后台线程
    ThreadUtils.newDaemonSingleThreadScheduledExecutor("task-scheduler-speculation")

  // Threshold above which we warn user initial TaskSet may be starved
  val STARVATION_TIMEOUT_MS = conf.getTimeAsMs("spark.starvation.timeout", "15s")

  // CPUs to request per task
  val CPUS_PER_TASK = conf.getInt("spark.task.cpus", 1)

  // TaskSetManagers are not thread safe, so any access to one should be synchronized
  // on this class.
  //一个Stage 有多个 attemptNumber的次数,每一次都会有一个对应的 TaskSetManager
  private val taskSetsByStageIdAndAttempt = new HashMap[Int, HashMap[Int, TaskSetManager]] //stage 与 taskID和TaskSetManager 的 关系

  // Protected by `this`
  private[scheduler] val taskIdToTaskSetManager = new ConcurrentHashMap[Long, TaskSetManager] // task id 和 TaskSetManager 的关系
  val taskIdToExecutorId = new HashMap[Long, String] //taskID 和 executor的关系

  @volatile private var hasReceivedTask = false
  @volatile private var hasLaunchedTask = false
  private val starvationTimer = new Timer(true)

  // Incrementing task IDs
  val nextTaskId = new AtomicLong(0) //产生task ID

  // IDs of the tasks running on each executor
  private val executorIdToRunningTaskIds = new HashMap[String, HashSet[Long]] //executor 与running 任务的 关系
//返回 executors 运行的 任务数 的 map
  def runningTasksByExecutors: Map[String, Int] = synchronized {
    executorIdToRunningTaskIds.toMap.mapValues(_.size)
  }

  // The set of executors we have on each host; this is used to compute hostsAlive, which
  // in turn is used to decide when we can attain data locality on a given host
  protected val hostToExecutors = new HashMap[String, HashSet[String]] //host 和executor 的关系,一个host节点可能有多个executor

  protected val hostsByRack = new HashMap[String, HashSet[String]]

  protected val executorIdToHost = new HashMap[String, String] //executor 和 host的map
  // Listener object to pass upcalls into
  var dagScheduler: DAGScheduler = null

  var backend: SchedulerBackend = null //这个是driver 和其他 exector 通信的

  val mapOutputTracker = SparkEnv.get.mapOutputTracker.asInstanceOf[MapOutputTrackerMaster] //保持 stage 的  map output 的 location

  private var schedulableBuilder: SchedulableBuilder = null
  // default scheduler is FIFO
  private val schedulingModeConf = conf.get(SCHEDULER_MODE_PROPERTY, SchedulingMode.FIFO.toString) //调度模式 默认FIFO
  val schedulingMode: SchedulingMode =
    try {
      SchedulingMode.withName(schedulingModeConf.toUpperCase(Locale.ROOT))
    } catch {
      case e: java.util.NoSuchElementException =>
        throw new SparkException(s"Unrecognized $SCHEDULER_MODE_PROPERTY: $schedulingModeConf")
    }

  //管理 多个 TaskSetManager,一般会在 TaskSchedulerImpl 中使用,所以大多数的方法是在 TaskSchedulerImpl 中被调用的
  val rootPool: Pool = new Pool("", schedulingMode, 0, 0)

  // This is a var so that we can reset it for testing purposes.
  // task 结果 获取器
  private[spark] var taskResultGetter = new TaskResultGetter(sc.env, this) //用于获取 Task 的 结果
//设置 DAGScheduler,是在DAGScheduler中调用的
  override def setDAGScheduler(dagScheduler: DAGScheduler) {
    this.dagScheduler = dagScheduler
  }
//初始化方法,在 SparkContext中随后调用,在 start方法调用之前
  def initialize(backend: SchedulerBackend) {
    this.backend = backend
    schedulableBuilder = {
      schedulingMode match {
        case SchedulingMode.FIFO =>
          new FIFOSchedulableBuilder(rootPool)
        case SchedulingMode.FAIR =>
          new FairSchedulableBuilder(rootPool, conf)
        case _ =>
          throw new IllegalArgumentException(s"Unsupported $SCHEDULER_MODE_PROPERTY: " +
          s"$schedulingMode")
      }
    }
    schedulableBuilder.buildPools()
  }

  def newTaskId(): Long = nextTaskId.getAndIncrement() //递增的 task id

//start方法 在 SparkContext 中 随后调用 line 508 主要启动 推测 scheduler 定时轮询 后台线程
  override def start() {
    backend.start() //backend start方法

    if (!isLocal && conf.getBoolean("spark.speculation", false)) { //开启 spark 推测 机制的话
      logInfo("Starting speculative execution thread")
      speculationScheduler.scheduleWithFixedDelay(new Runnable { //推测 scheduler 定时轮询 后台线程
        override def run(): Unit = Utils.tryOrStopSparkContext(sc) {
          checkSpeculatableTasks() //检查 spark 推测 任务
        }
      }, SPECULATION_INTERVAL_MS, SPECULATION_INTERVAL_MS, TimeUnit.MILLISECONDS)
    }
  }
//start的 钩子函数
  override def postStartHook() {
    waitBackendReady() //等待 backend ready
  }
//提交一个Stage的任务  -》更新 taskSetsByStageIdAndAttempt
  //在DAGScheduler中 submitMissingTasks 方法中 调用的
  override def submitTasks(taskSet: TaskSet) {//这里的TaskSet 是一个Stage里的所有的任务
    val tasks: Array[Task[_]] = taskSet.tasks
    logInfo("Adding task set " + taskSet.id + " with " + tasks.length + " tasks")
    this.synchronized {
      val manager: TaskSetManager = createTaskSetManager(taskSet, maxTaskFailures) //为这个Stage的TaskSet new 一个 TaskSetManager
      val stage: Int = taskSet.stageId //这个Stage Id
      val stageTaskSets: mutable.Map[Int, TaskSetManager] =
        taskSetsByStageIdAndAttempt.getOrElseUpdate(stage, new HashMap[Int, TaskSetManager]) //一个Stage 有多个 attemptNumber的次数,每一次都会有一个对应的 TaskSetManager

      // Mark all the existing TaskSetManagers of this stage as zombie, as we are adding a new one.
      // This is necessary to handle a corner case. Let's say a stage has 10 partitions and has 2
      // TaskSetManagers: TSM1(zombie) and TSM2(active). TSM1 has a running task for partition 10
      // and it completes. TSM2 finishes tasks for partition 1-9, and thinks he is still active
      // because partition 10 is not completed yet. However, DAGScheduler gets task completion
      // events for all the 10 partitions and thinks the stage is finished. If it's a shuffle stage
      // and somehow it has missing map outputs, then DAGScheduler will resubmit it and create a
      // TSM3 for it. As a stage can't have more than one active task set managers, we must mark
      // TSM2 as zombie (it actually is).
      stageTaskSets.foreach { case (_, ts) => //为已经存在的 TaskSetManagers 的 isZombie 设置为 true,表示这个Stage的 tasks 都已经 运行完成了,当新添加一个Stage时,必然前面的Stage已经完成了
        ts.isZombie = true
      }
      stageTaskSets(taskSet.stageAttemptId) = manager //更新这个 stageAttemptId的 TaskSetManager
      schedulableBuilder.addTaskSetManager(manager, manager.taskSet.properties) //使用FIFOSchedulableBuilder add TaskSetManager 到 Pool中去

      if (!isLocal && !hasReceivedTask) {//hasReceivedTask 首次 是 false, isLocal在yarn-cluster是false
        starvationTimer.scheduleAtFixedRate(new TimerTask() {//定时任务
          override def run() {
            if (!hasLaunchedTask) {//hasLaunchedTask 首次是false
              logWarning("Initial job has not accepted any resources; " +
                "check your cluster UI to ensure that workers are registered " +
                "and have sufficient resources")
            } else {//当任务 第二次的时候,走这个 分支,下面这个方法就是 stop 自己的 TimerTask 线程
              this.cancel()
            }
          }
        }, STARVATION_TIMEOUT_MS, STARVATION_TIMEOUT_MS)
      }
      hasReceivedTask = true//hasReceivedTask 更新为true
    }
    backend.reviveOffers() //通知SchedulerBackend  拿到对应的task的TaskDescript ,来通知executor 执行tasks
  }

  // Label as private[scheduler] to allow tests to swap in different task set managers if necessary
  //新建一个taskSetManager,自己内部调用
  private[scheduler] def createTaskSetManager(
      taskSet: TaskSet,
      maxTaskFailures: Int): TaskSetManager = {
    new TaskSetManager(this, taskSet, maxTaskFailures, blacklistTrackerOpt) //新建 TaskSetManager 对象 , spark 的 黑名单 默认关闭的话 blacklistTrackerOpt 是 None
  }

  //取消 某个 Stage的tasks
  //在DAGScheduler中 failJobAndIndependentStages 方法中 调用的
  override def cancelTasks(stageId: Int, interruptThread: Boolean): Unit = synchronized {
    logInfo("Cancelling stage " + stageId)
    taskSetsByStageIdAndAttempt.get(stageId).foreach { attempts => //get到 这个Stage的 attempts
      attempts.foreach { case (_, tsm) => //tsm 就是 TaskSetManager的实例
        // There are two possible cases here:
        // 1. The task set manager has been created and some tasks have been scheduled.
        //    In this case, send a kill signal to the executors to kill the task and then abort
        //    the stage.
        // 2. The task set manager has been created but no tasks have been scheduled. In this case,
        //    simply abort the stage.
        tsm.runningTasksSet.foreach { tid => //所有的task
            taskIdToExecutorId.get(tid).foreach(execId => //取得运行task 的 executorID
              backend.killTask(tid, execId, interruptThread, reason = "Stage cancelled")) //kill 这个 execID 的task
        }
        tsm.abort("Stage %s cancelled".format(stageId)) //再次 abort 确保正确
        logInfo("Stage %d was cancelled".format(stageId))
      }
    }
  }

//kill 一个 task,在DAGScheduler中调用
//在DAGScheduler中 killTaskAttempt 方法中 调用的
  override def killTaskAttempt(taskId: Long, interruptThread: Boolean, reason: String): Boolean = {
    logInfo(s"Killing task $taskId: $reason")
    val execId = taskIdToExecutorId.get(taskId) //拿到这个task的 execID
    if (execId.isDefined) {
      backend.killTask(taskId, execId.get, interruptThread, reason) //使用 backend kill 掉这个 execID的这个task
      true
    } else {
      logWarning(s"Could not kill task $taskId because no task with that ID was found.")
      false
    }
  }

  /**
   * Called to indicate that all task attempts (including speculated tasks) associated with the
   * given TaskSetManager have completed, so state associated with the TaskSetManager should be
   * cleaned up.
   */
  //这个TaskSetManager 处理成功
  //这个方法会在 TaskSetManager 中的 maybeFinishTaskSet 中调用,因为一个Stage的tasks 是否已经运行完成,是在 TaskSetManager 中保存维持的
  def taskSetFinished(manager: TaskSetManager): Unit = synchronized {
    taskSetsByStageIdAndAttempt.get(manager.taskSet.stageId).foreach { taskSetsForStage => //taskSetsForStage这个就是 HashMap[Int, TaskSetManager]
      taskSetsForStage -= manager.taskSet.stageAttemptId // HashMap[Int, TaskSetManager] 中去掉  这个成功的stageAttemptId
      if (taskSetsForStage.isEmpty) { //可能需要清理这个 taskSetsByStageIdAndAttempt
        taskSetsByStageIdAndAttempt -= manager.taskSet.stageId
      }
    }
    manager.parent.removeSchedulable(manager) //这个 manager.parent  就是 Pool这个对象,通知 Pool 移除这个 TaskSetMananger
    logInfo(s"Removed TaskSet ${manager.taskSet.id}, whose tasks have all completed, from pool" +
      s" ${manager.parent.name}")
  }

//此方法本类中使用, 下面的 resourceOffers 会被调用 用来 更新 tasks ArrayBuffer的TaskDescription 信息,会从 此 TaskSetManager 的 resourceOffer拿到这些 tasks
  private def resourceOfferSingleTaskSet(
      taskSet: TaskSetManager,
      maxLocality: TaskLocality, //maxLocality 从 PROCESS_LOCAL -》 ANY
      shuffledOffers: Seq[WorkerOffer],//每个executor 的 信息
      availableCpus: Array[Int], //每个executor 可用的核数
      tasks: IndexedSeq[ArrayBuffer[TaskDescription]]) : Boolean = { //这个目前 只是 null 的 ArrayBuffer[TaskDescription]
    var launchedTask = false
    // nodes and executors that are blacklisted for the entire application have already been
    // filtered out by this point
    for (i <- 0 until shuffledOffers.size) { //shuffledOffers 是 executor 的粒度
      val execId = shuffledOffers(i).executorId
      val host = shuffledOffers(i).host
      if (availableCpus(i) >= CPUS_PER_TASK) {//可用核数 》= 1
        try {//resourceOffer 这个方法只会返回 一个 Option[TaskDescription]
          for (task <- taskSet.resourceOffer(execId, host, maxLocality)) { //在 此 host 的 execId 的maxLocality 条件下 调度任务,返回 TaskDescription 信息
            tasks(i) += task //更新上面的 null 的 ArrayBuffer[TaskDescription] ,注意这里是 ArrayBuffer
            val tid = task.taskId
            taskIdToTaskSetManager.put(tid, taskSet)
            taskIdToExecutorId(tid) = execId
            executorIdToRunningTaskIds(execId).add(tid)
            availableCpus(i) -= CPUS_PER_TASK //更新这个 exector的 可用核数
            assert(availableCpus(i) >= 0)
            launchedTask = true
          }
        } catch {
          case e: TaskNotSerializableException =>
            logError(s"Resource offer failed, task set ${taskSet.name} was not serializable")
            // Do not offer resources for this task, but don't throw an error to allow other
            // task sets to be submitted.
            return launchedTask
        }
      }
    }
    return launchedTask
  }

  /**
   * Called by cluster manager to offer resources on slaves. We respond by asking our active task
   * sets for tasks in order of priority. We fill each node with tasks in a round-robin manner so
   * that tasks are balanced across the cluster.
   */
  //WorkerOffer 是executor的空闲核数
  //offers 是 存活的 executors 的 包含 空闲核数的 包装类 WorkerOffer
  //这个方法在 CoarseGrainedSchedulerBackend 中的 makeOffers 中调用,在 CoarseGrainedSchedulerBackend 中 持有这个 TaskScheduler 对象
  def resourceOffers(offers: IndexedSeq[WorkerOffer]): Seq[Seq[TaskDescription]] = synchronized {
    // Mark each slave as alive and remember its hostname
    // Also track if new executor is added
    var newExecAvail = false
    for (o <- offers) {//offers 是 存活的 executors 的 包含 空闲核数的 包装类 WorkerOffer
      if (!hostToExecutors.contains(o.host)) {
        hostToExecutors(o.host) = new HashSet[String]()
      }
      if (!executorIdToRunningTaskIds.contains(o.executorId)) {
        hostToExecutors(o.host) += o.executorId
        executorAdded(o.executorId, o.host)
        executorIdToHost(o.executorId) = o.host
        executorIdToRunningTaskIds(o.executorId) = HashSet[Long]()
        newExecAvail = true
      }
      for (rack <- getRackForHost(o.host)) {
        hostsByRack.getOrElseUpdate(rack, new HashSet[String]()) += o.host
      }
    }

    // Before making any offers, remove any nodes from the blacklist whose blacklist has expired. Do
    // this here to avoid a separate thread and added synchronization overhead, and also because
    // updating the blacklist is only relevant when task offers are being made.
    blacklistTrackerOpt.foreach(_.applyBlacklistTimeout())

    //因为 Spark黑名单机制么有开启,所以 filteredOffers 就是 offers
    val filteredOffers = blacklistTrackerOpt.map { blacklistTracker =>
      offers.filter { offer =>
        !blacklistTracker.isNodeBlacklisted(offer.host) &&
          !blacklistTracker.isExecutorBlacklisted(offer.executorId)
      }
    }.getOrElse(offers)
    //做一个 shuffle
    val shuffledOffers: IndexedSeq[WorkerOffer] = shuffleOffers(filteredOffers)
    // Build a list of tasks to assign to each worker.
    val tasks: IndexedSeq[ArrayBuffer[TaskDescription]] = shuffledOffers.map(o => new ArrayBuffer[TaskDescription](o.cores / CPUS_PER_TASK)) //CPUS_PER_TASK 的意思就是 一个 CPU分配 几个task任务,默认一个CPU一个task
    val availableCpus: Array[Int] = shuffledOffers.map(o => o.cores).toArray //每个 Offers 可用的核数
    val sortedTaskSets: mutable.Seq[TaskSetManager] = rootPool.getSortedTaskSetQueue //获取 sorted task 一般情况下,这个 Queue中只有一个 Stage的 TaskSetManager
    for (taskSet <- sortedTaskSets) {
      logDebug("parentName: %s, name: %s, runningTasks: %s".format(
        taskSet.parent.name, taskSet.name, taskSet.runningTasks)) //这个 taskSet.parent.name 就是 Pool的name 也就是 本类中 new Pool 时指定的 名称 ""
      //taskSet.name 就是 taskSet_id这个id 就是 DAGScheduler 传过来的 Task id
      if (newExecAvail) {
        taskSet.executorAdded()
      }
    }

    // Take each TaskSet in our scheduling order, and then offer it each node in increasing order
    // of locality levels so that it gets a chance to launch local tasks on all of them.
    // NOTE: the preferredLocality order: PROCESS_LOCAL, NODE_LOCAL, NO_PREF, RACK_LOCAL, ANY
    for (taskSet <- sortedTaskSets) {
      var launchedAnyTask = false
      var launchedTaskAtCurrentMaxLocality = false
      for (currentMaxLocality <- taskSet.myLocalityLevels) {
        do {
          launchedTaskAtCurrentMaxLocality = resourceOfferSingleTaskSet( //更新 tasks 这个resourceOfferSingleTaskSet方法就是 紧邻的上面
            taskSet, currentMaxLocality, shuffledOffers, availableCpus, tasks)
          launchedAnyTask |= launchedTaskAtCurrentMaxLocality
        } while (launchedTaskAtCurrentMaxLocality)
      }
      if (!launchedAnyTask) {
        taskSet.abortIfCompletelyBlacklisted(hostToExecutors)
      }
    }

    if (tasks.size > 0) {
      hasLaunchedTask = true
    }
    return tasks //返回 分配好的 IndexedSeq[ArrayBuffer[TaskDescription]]
  }

  /**
   * Shuffle offers around to avoid always placing tasks on the same workers.  Exposed to allow
   * overriding in tests, so it can be deterministic.
   */
  //shuffled WorkerOffer
  protected def shuffleOffers(offers: IndexedSeq[WorkerOffer]): IndexedSeq[WorkerOffer] = {
    Random.shuffle(offers)
  }

  //更新 某个 task 的执行状态
  //这个方法会在 CoarseGrainedSchedulerbackend 中 当 executor 中的一个 task 运行完成后,会通知 backend 执行 StatusUpdate,接着就会 调用本方法
  //当 这个 任务的 state 是 FINISHED时,
  def statusUpdate(tid: Long, state: TaskState, serializedData: ByteBuffer) {
    var failedExecutor: Option[String] = None
    var reason: Option[ExecutorLossReason] = None
    synchronized {
      try {
        Option(taskIdToTaskSetManager.get(tid)) match {//取得 对应的 taskSetManager
          case Some(taskSet) =>
            if (state == TaskState.LOST) {//TaskLost 情况
              // TaskState.LOST is only used by the deprecated Mesos fine-grained scheduling mode,
              // where each executor corresponds to a single task, so mark the executor as failed.
              val execId = taskIdToExecutorId.getOrElse(tid, throw new IllegalStateException( //获取 对应的 executor
                "taskIdToTaskSetManager.contains(tid) <=> taskIdToExecutorId.contains(tid)"))
              if (executorIdToRunningTaskIds.contains(execId)) {//这个 executor 上是否有运行的 任务
                reason = Some(
                  SlaveLost(s"Task $tid was lost, so marking the executor as lost as well."))
                removeExecutor(execId, reason.get) //移除一个executor,会移除这个exec上的所有的任务,更新 hostToExecutors 信息,hostsByRack,executorIdToHost
                failedExecutor = Some(execId)
              }
            }
            if (TaskState.isFinished(state)) {//Task Finished 情况
              cleanupTaskState(tid) //清理 taskIdToTaskSetManager,taskIdToExecutorId,executorIdToRunningTaskIds 信息
              taskSet.removeRunningTask(tid)  //从 runningTasksSet 和 Poll  中移除这个 task id
              if (state == TaskState.FINISHED) {
                taskResultGetter.enqueueSuccessfulTask(taskSet, tid, serializedData) //调用 taskResultGetter 的 enqueueSuccessfulTask 方法,这个方法中 会调用本类的 handleSuccessfulTask 方法
                //而这个 handleSuccessfulTask 方法中 会调用 TaskSetManager 的 handleSuccessfulTask 方法,TaskSetManager 的 handleSuccessfulTask 中 会 调用 TaskSetManager 的 maybeFinishTaskSet
                //方法,可能这个Stage 的 所有的tasks 都已经完成了
                //同理 下面的 Task FAILED,KILLED,LOST的时候也会 和上面的 调用逻辑类似
              } else if (Set(TaskState.FAILED, TaskState.KILLED, TaskState.LOST).contains(state)) {
                taskResultGetter.enqueueFailedTask(taskSet, tid, state, serializedData)
              }
            }
          case None =>
            logError(
              ("Ignoring update with state %s for TID %s because its task set is gone (this is " +
                "likely the result of receiving duplicate task finished status updates) or its " +
                "executor has been marked as failed.")
                .format(state, tid))
        }
      } catch {
        case e: Exception => logError("Exception in statusUpdate", e)
      }
    }
    // Update the DAGScheduler without holding a lock on this, since that can deadlock
    if (failedExecutor.isDefined) {//如果有 failedExecutor 通知 dagScheduler.executorLost 和 backend
      assert(reason.isDefined)
      dagScheduler.executorLost(failedExecutor.get, reason.get)
      backend.reviveOffers()
    }
  }

  /**
   * Update metrics for in-progress tasks and let the master know that the BlockManager is still
   * alive. Return true if the driver knows about the given block manager. Otherwise, return false,
   * indicating that the block manager should re-register.
   */
  //driver 的 blockManagerMasterEndpoint 中是否已经注册过了这个 blockManagerId
  //这个方法 会 在 HeartbeatReceiver 的 receiveAndReply 的 case heartbeat @ Heartbeat(executorId, accumUpdates, blockManagerId) => 方法中调用
  //主要用来 更新 累加变量
  override def executorHeartbeatReceived(
      execId: String,
      accumUpdates: Array[(Long, Seq[AccumulatorV2[_, _]])],
      blockManagerId: BlockManagerId): Boolean = {
    // (taskId, stageId, stageAttemptId, accumUpdates)
    val accumUpdatesWithTaskIds: Array[(Long, Int, Int, Seq[AccumulableInfo])] = {
      accumUpdates.flatMap { case (id, updates) =>
        val accInfos = updates.map(acc => acc.toInfo(Some(acc.value), None))
        Option(taskIdToTaskSetManager.get(id)).map { taskSetMgr =>
          (id, taskSetMgr.stageId, taskSetMgr.taskSet.stageAttemptId, accInfos)
        }
      }
    }
    //driver de blockManagerMasterEndpoint 中是否已经注册过了这个 blockManagerId
    dagScheduler.executorHeartbeatReceived(execId, accumUpdatesWithTaskIds, blockManagerId)
  }

  //在 TaskResultGetter 的 enqueueSuccessfulTask 方法中 会使用到
  def handleTaskGettingResult(taskSetManager: TaskSetManager, tid: Long): Unit = synchronized {
    taskSetManager.handleTaskGettingResult(tid)
  }

  //在 TaskResultGetter 的 enqueueSuccessfulTask 方法中 会使用到
  def handleSuccessfulTask(
      taskSetManager: TaskSetManager,
      tid: Long,
      taskResult: DirectTaskResult[_]): Unit = synchronized {
    taskSetManager.handleSuccessfulTask(tid, taskResult) //调用 TaskScheduler的 handleSuccessfulTask 方法
  }

  //在 TaskResultGetter 的 enqueueSuccessfulTask 方法中 会使用到
  def handleFailedTask(
      taskSetManager: TaskSetManager,
      tid: Long,
      taskState: TaskState,
      reason: TaskFailedReason): Unit = synchronized {
    taskSetManager.handleFailedTask(tid, taskState, reason)
    if (!taskSetManager.isZombie && !taskSetManager.someAttemptSucceeded(tid)) {
      // Need to revive offers again now that the task set manager state has been updated to
      // reflect failed tasks that need to be re-run.
      backend.reviveOffers()
    }
  }

  def error(message: String) {
    synchronized {
      if (taskSetsByStageIdAndAttempt.nonEmpty) {
        // Have each task set throw a SparkException with the error
        for {
          attempts <- taskSetsByStageIdAndAttempt.values
          manager <- attempts.values
        } {
          try {
            manager.abort(message) //每个 Stage 的 TaskSetManager 手动 taskSetFailed
          } catch {
            case e: Exception => logError("Exception in error callback", e)
          }
        }
      } else {
        // No task sets are active but we still got an error. Just exit since this
        // must mean the error is during registration.
        // It might be good to do something smarter here in the future.
        throw new SparkException(s"Exiting due to error from cluster scheduler: $message")
      }
    }
  }

  //在DAGScheduler中 stop 方法中 调用的
  override def stop() {
    speculationScheduler.shutdown()
    if (backend != null) {
      backend.stop()
    }
    if (taskResultGetter != null) {
      taskResultGetter.stop()
    }
    starvationTimer.cancel()
  }

  //在DAGScheduler 中会使用到
  override def defaultParallelism(): Int = backend.defaultParallelism()

  // Check for speculatable tasks in all our active jobs.
  //检查 spark 推测 任务,本类的定时任务
  def checkSpeculatableTasks() {
    var shouldRevive = false
    synchronized {
      shouldRevive = rootPool.checkSpeculatableTasks(MIN_TIME_TO_SPECULATION) //调用 Pool 的 checkSpeculatableTasks
    }
    if (shouldRevive) {//有可以推测的任务
      backend.reviveOffers() //执行这些任务
    }
  }

  //HeartbeatReceiver 监测这个executor 超时后, taskScheduler 执行 executor lost 相应的 操作
  //在 Backend 中的removeExecutor中会使用到
  override def executorLost(executorId: String, reason: ExecutorLossReason): Unit = {
    var failedExecutor: Option[String] = None

    synchronized {
      if (executorIdToRunningTaskIds.contains(executorId)) {
        val hostPort = executorIdToHost(executorId)
        logExecutorLoss(executorId, hostPort, reason)
        removeExecutor(executorId, reason)
        failedExecutor = Some(executorId)
      } else {
        executorIdToHost.get(executorId) match {
          case Some(hostPort) =>
            // If the host mapping still exists, it means we don't know the loss reason for the
            // executor. So call removeExecutor() to update tasks running on that executor when
            // the real loss reason is finally known.
            logExecutorLoss(executorId, hostPort, reason)
            removeExecutor(executorId, reason)

          case None =>
            // We may get multiple executorLost() calls with different loss reasons. For example,
            // one may be triggered by a dropped connection from the slave while another may be a
            // report of executor termination from Mesos. We produce log messages for both so we
            // eventually report the termination reason.
            logError(s"Lost an executor $executorId (already removed): $reason")
        }
      }
    }
    // Call dagScheduler.executorLost without holding the lock on this to prevent deadlock
    if (failedExecutor.isDefined) {
      dagScheduler.executorLost(failedExecutor.get, reason)
      backend.reviveOffers()
    }
  }
  //在 Backend 中的removeExecutor中会使用到
  override def workerRemoved(workerId: String, host: String, message: String): Unit = {
    logInfo(s"Handle removed worker $workerId: $message")
    dagScheduler.workerRemoved(workerId, host, message)
  }

  //本类自己使用
  private def logExecutorLoss(
      executorId: String,
      hostPort: String,
      reason: ExecutorLossReason): Unit = reason match {
    case LossReasonPending =>
      logDebug(s"Executor $executorId on $hostPort lost, but reason not yet known.")
    case ExecutorKilled =>
      logInfo(s"Executor $executorId on $hostPort killed by driver.")
    case _ =>
      logError(s"Lost executor $executorId on $hostPort: $reason")
  }

  /**
   * Cleans up the TaskScheduler's state for tracking the given task.
   */
  //清理 TaskScheduler 状态等,本类自己使用
  private def cleanupTaskState(tid: Long): Unit = {
    taskIdToTaskSetManager.remove(tid) //清理taskIdToTaskSetManager
    taskIdToExecutorId.remove(tid).foreach { executorId => //清理taskIdToExecutorId 上的 这个任务
      executorIdToRunningTaskIds.get(executorId).foreach { _.remove(tid) }
    }
  }

  /**
   * Remove an executor from all our data structures and mark it as lost. If the executor's loss
   * reason is not yet known, do not yet remove its association with its host nor update the status
   * of any running tasks, since the loss reason defines whether we'll fail those tasks.
   */
  //移除一个executor,会移除这个exec上的所有的任务,更新 hostToExecutors 信息,hostsByRack,executorIdToHost
  //本类的 statusUpdate 和 executorLost 方法中会调用
  private def removeExecutor(executorId: String, reason: ExecutorLossReason) {
    // The tasks on the lost executor may not send any more status updates (because the executor
    // has been lost), so they should be cleaned up here.
    executorIdToRunningTaskIds.remove(executorId).foreach { taskIds => //对这个 executor 上的 task 依次 cleanupTaskState
      logDebug("Cleaning up TaskScheduler state for tasks " +
        s"${taskIds.mkString("[", ",", "]")} on failed executor $executorId")
      // We do not notify the TaskSetManager of the task failures because that will
      // happen below in the rootPool.executorLost() call.
      taskIds.foreach(cleanupTaskState) //清理 TaskScheduler 状态等
    }

    val host = executorIdToHost(executorId) //拿到这个 executor的host
    val execs: mutable.Set[String] = hostToExecutors.getOrElse(host, new HashSet) //更新 hostToExecutors 信息,hostsByRack,executorIdToHost
    execs -= executorId
    if (execs.isEmpty) {
      hostToExecutors -= host
      for (rack <- getRackForHost(host); hosts <- hostsByRack.get(rack)) {
        hosts -= host
        if (hosts.isEmpty) {
          hostsByRack -= rack
        }
      }
    }

    if (reason != LossReasonPending) {
      executorIdToHost -= executorId
      rootPool.executorLost(executorId, host, reason) //
    }
    blacklistTrackerOpt.foreach(_.handleRemovedExecutor(executorId))
  }
//增加一个 executor
  def executorAdded(execId: String, host: String) {
    dagScheduler.executorAdded(execId, host)
  }
  //这个 host上的 executor的 set
  def getExecutorsAliveOnHost(host: String): Option[Set[String]] = synchronized {
    hostToExecutors.get(host).map(_.toSet) //这个 host上的 executor的 set
  }
//这个host是否存在exector
  def hasExecutorsAliveOnHost(host: String): Boolean = synchronized {
    hostToExecutors.contains(host) //host与executor的关系中 是否存在这个 host
  }
//这个rack里面是否有 host存在
  def hasHostAliveOnRack(rack: String): Boolean = synchronized {
    hostsByRack.contains(rack)
  }
//这个execID是否存在
  def isExecutorAlive(execId: String): Boolean = synchronized {
    executorIdToRunningTaskIds.contains(execId) //executor 与running 任务的 关系
  }
//这个ececID是否有task在运行
  def isExecutorBusy(execId: String): Boolean = synchronized {
    executorIdToRunningTaskIds.get(execId).exists(_.nonEmpty)
  }

  /**
   * Get a snapshot of the currently blacklisted nodes for the entire application.  This is
   * thread-safe -- it can be called without a lock on the TaskScheduler.
   */
  //None
  def nodeBlacklist(): scala.collection.immutable.Set[String] = {
    blacklistTrackerOpt.map(_.nodeBlacklist()).getOrElse(scala.collection.immutable.Set())
  }

  // By default, rack is unknown
  def getRackForHost(value: String): Option[String] = None
// 等待 backend ready
  private def waitBackendReady(): Unit = {
    if (backend.isReady) { //如果 backend 已经ready 则直接 return ,否则 等待 backend 就绪
      return
    }
    while (!backend.isReady) {
      // Might take a while for backend to be ready if it is waiting on resources.
      if (sc.stopped.get) {
        // For example: the master removes the application for some reason
        throw new IllegalStateException("Spark context stopped while waiting for backend")
      }
      synchronized {
        this.wait(100)
      }
    }
  }
//获取 applicationID
  override def applicationId(): String = backend.applicationId()
//获取application AttemptID
  override def applicationAttemptId(): Option[String] = backend.applicationAttemptId()
//获取 这个 stageId 的 stageAttemptId 的 TaskSetManager
  private[scheduler] def taskSetManagerForAttempt(
      stageId: Int,
      stageAttemptId: Int): Option[TaskSetManager] = {
    for {
      attempts <- taskSetsByStageIdAndAttempt.get(stageId)
      manager <- attempts.get(stageAttemptId)
    } yield {
      manager
    }
  }

  /**
   * Marks the task has completed in all TaskSetManagers for the given stage.
   *
   * After stage failure and retry, there may be multiple TaskSetManagers for the stage.
   * If an earlier attempt of a stage completes a task, we should ensure that the later attempts
   * do not also submit those same tasks.  That also means that a task completion from an earlier
   * attempt can lead to the entire stage getting marked as successful.
   */
  //标记 这个 stageId 的 partitionId这个task 完成
  //在 TaskSetMananger 中的 handleSuccessfulTask 方法中会调用这个 markPartitionCompletedInAllTaskSets 方法
  private[scheduler] def markPartitionCompletedInAllTaskSets(
      stageId: Int,
      partitionId: Int,
      taskInfo: TaskInfo) = {
    taskSetsByStageIdAndAttempt.getOrElse(stageId, Map()).values.foreach { tsm => //。values 就是所有的 TaskSetManager
      tsm.markPartitionCompleted(partitionId, taskInfo)//调用 TaskSetManager 的 markPartitionCompleted 方法
    }
  }

}

object TaskSchedulerImpl

private[spark] object TaskSchedulerImpl {

  val SCHEDULER_MODE_PROPERTY = "spark.scheduler.mode"

  /**
   * Used to balance containers across hosts.
   *
   * Accepts a map of hosts to resource offers for that host, and returns a prioritized list of
   * resource offers representing the order in which the offers should be used. The resource
   * offers are ordered such that we'll allocate one container on each host before allocating a
   * second container on any host, and so on, in order to reduce the damage if a host fails.
   *
   * For example, given {@literal }, {@literal } and
   * {@literal }, returns {@literal [o1, o5, o4, o2, o6, o3]}.
   */
  def prioritizeContainers[K, T] (map: HashMap[K, ArrayBuffer[T]]): List[T] = {
    val _keyList = new ArrayBuffer[K](map.size)
    _keyList ++= map.keys

    // order keyList based on population of value in map
    val keyList = _keyList.sortWith(
      (left, right) => map(left).size > map(right).size
    )

    val retval = new ArrayBuffer[T](keyList.size * 2)
    var index = 0
    var found = true

    while (found) {
      found = false
      for (key <- keyList) {
        val containerList: ArrayBuffer[T] = map.getOrElse(key, null)
        assert(containerList != null)
        // Get the index'th entry for this host - if present
        if (index < containerList.size) {
          retval += containerList.apply(index)
          found = true
        }
      }
      index += 1
    }

    retval.toList
  }

  private def maybeCreateBlacklistTracker(sc: SparkContext): Option[BlacklistTracker] = {
    if (BlacklistTracker.isBlacklistEnabled(sc.conf)) {//默认关闭
      val executorAllocClient: Option[ExecutorAllocationClient] = sc.schedulerBackend match {
        case b: ExecutorAllocationClient => Some(b)
        case _ => None
      }
      Some(new BlacklistTracker(sc, executorAllocClient))
    } else {
      None
    }
  }

}

TaskSetManager

class TaskSetManager

在 TaskSchedulerImpl 的createTaskSetManager 方法中 会 new 这个对象
所以一般 会在 TaskSchedulerImpl 使用这个类的方法
管理 一个Stage 的 tasks.

//在 TaskSchedulerImpl 的createTaskSetManager 方法中 会 new 这个对象
//所以一般 会在 TaskSchedulerImpl 使用这个类的方法
//管理 一个Stage 的 tasks
private[spark] class TaskSetManager(
    sched: TaskSchedulerImpl,
    val taskSet: TaskSet, //这个Stage的任务 集合,由DAGScheduler 产生且传入进来
    val maxTaskFailures: Int,
    blacklistTracker: Option[BlacklistTracker] = None, //spark 的 黑名单 默认关闭的话 blacklistTrackerOpt 是 None
    clock: Clock = new SystemClock()) extends Schedulable with Logging {

  private val conf = sched.sc.conf

  // SPARK-21563 make a copy of the jars/files so they are consistent across the TaskSet
  private val addedJars = HashMap[String, Long](sched.sc.addedJars.toSeq: _*)
  private val addedFiles = HashMap[String, Long](sched.sc.addedFiles.toSeq: _*)

  // Quantile of tasks at which to start speculation
  val SPECULATION_QUANTILE = conf.getDouble("spark.speculation.quantile", 0.75)
  val SPECULATION_MULTIPLIER = conf.getDouble("spark.speculation.multiplier", 1.5)

  // Limit of bytes for total size of results (default is 1GB)
  val maxResultSize = Utils.getMaxResultSize(conf) // spark.driver.maxResultSize 的限制

  val speculationEnabled = conf.getBoolean("spark.speculation", false) //spark 推测 机制 是否开启

  // Serializer for closures and tasks.
  val env = SparkEnv.get
  val ser = env.closureSerializer.newInstance() //序列化器 默认 java 序列化

  val tasks: Array[Task[_]] = taskSet.tasks
  private[scheduler] val partitionToIndex: Map[Int, Int] = tasks.zipWithIndex
    .map { case (t, idx) => t.partitionId -> idx }.toMap //task 的 partitionId和index 的map
  val numTasks = tasks.length //task的长度
  val copiesRunning = new Array[Int](numTasks) //记录这个 task 正在运行的 数量

  // For each task, tracks whether a copy of the task has succeeded. A task will also be
  // marked as "succeeded" if it failed with a fetch failure, in which case it should not
  // be re-run because the missing map data needs to be regenerated first.
  val successful = new Array[Boolean](numTasks) //成功任务结果的 统计 数组
  private val numFailures = new Array[Int](numTasks)//失败任务结果的 统计 数组

  // Add the tid of task into this HashSet when the task is killed by other attempt tasks.
  // This happened while we set the `spark.speculation` to true. The task killed by others
  // should not resubmit while executor lost.
  private val killedByOtherAttempt = new HashSet[Long] //被 kill 的
  //TaskInfo : 一个 task 的描述 包括 taskID,index,attemptNum,executorid,host,task本地行,是否可以推断 等属性
  val taskAttempts: Array[List[TaskInfo]] = Array.fill[List[TaskInfo]](numTasks)(Nil)
  private[scheduler] var tasksSuccessful = 0

  val weight = 1
  val minShare = 0
  var priority = taskSet.priority
  var stageId = taskSet.stageId
  val name = "TaskSet_" + taskSet.id
  var parent: Pool = null
  private var totalResultSize = 0L
  private var calculatedTasks = 0

  private[scheduler] val taskSetBlacklistHelperOpt: Option[TaskSetBlacklist] = { ////spark 的 黑名单 默认关闭的话 blacklistTrackerOpt 是 None ;这个也是为 None
    blacklistTracker.map { _ => //spark 的 黑名单 默认关闭的话 blacklistTrackerOpt 是 None
      new TaskSetBlacklist(conf, stageId, clock)
    }
  }

  private[scheduler] val runningTasksSet = new HashSet[Long] //正在running task 的set
  //这个方法在 TaskSchedulerImpl 中会被使用
  override def runningTasks: Int = runningTasksSet.size //正在running task 的数量
//返回 成功任务结果的 统计 数组 中的这个 tid 的状态,在 TaskSchedulerImpl 中会被使用
  def someAttemptSucceeded(tid: Long): Boolean = {
    successful(taskInfos(tid).index) //taskInfos = taskID 和 TaskInfo 的映射关系; successful = 成功任务结果的 统计 数组
  }

  // True once no more tasks should be launched for this task set manager. TaskSetManagers enter
  // the zombie state once at least one attempt of each task has completed successfully, or if the
  // task set is aborted (for example, because it was killed).  TaskSetManagers remain in the zombie
  // state until all tasks have finished running; we keep TaskSetManagers that are in the zombie
  // state in order to continue to track and account for the running tasks.
  // TODO: We should kill any running task attempts when the task set manager becomes a zombie.
  private[scheduler] var isZombie = false

  // Set of pending tasks for each executor. These collections are actually
  // treated as stacks, in which new tasks are added to the end of the
  // ArrayBuffer and removed from the end. This makes it faster to detect
  // tasks that repeatedly fail because whenever a task failed, it is put
  // back at the head of the stack. These collections may contain duplicates
  // for two reasons:
  // (1): Tasks are only removed lazily; when a task is launched, it remains
  // in all the pending lists except the one that it was launched from.
  // (2): Tasks may be re-added to these lists multiple times as a result
  // of failures.
  // Duplicates are handled in dequeueTaskFromList, which ensures that a
  // task hasn't already started running before launching it.
  private val pendingTasksForExecutor = new HashMap[String, ArrayBuffer[Int]] //pending的 executor  和 task 的 map

  // Set of pending tasks for each host. Similar to pendingTasksForExecutor,
  // but at host level.
  private val pendingTasksForHost = new HashMap[String, ArrayBuffer[Int]] //pending 的 host 和 task 的 map

  // Set of pending tasks for each rack -- similar to the above.
  private val pendingTasksForRack = new HashMap[String, ArrayBuffer[Int]] //pending 的 rack 和 task 的 map

  // Set containing pending tasks with no locality preferences.
  private[scheduler] var pendingTasksWithNoPrefs = new ArrayBuffer[Int] //pending 的 无特性 和 task 的 array

  // Set containing all pending tasks (also used as a stack, as above).
  private val allPendingTasks = new ArrayBuffer[Int] //所有 pending的 task的 array

  // Tasks that can be speculated. Since these will be a small fraction of total
  // tasks, we'll just hold them in a HashSet.
  private[scheduler] val speculatableTasks = new HashSet[Int] //推测 任务的 set集合

  // Task index, start and finish time for each task attempt (indexed by task ID)
  private[scheduler] val taskInfos = new HashMap[Long, TaskInfo] //taskID 和 TaskInfo 的映射关系

  // Use a MedianHeap to record durations of successful tasks so we know when to launch
  // speculative tasks. This is only used when speculation is enabled, to avoid the overhead
  // of inserting into the heap when the heap won't be used.
  val successfulTaskDurations = new MedianHeap() //记录 推测的任务 durations

  // How frequently to reprint duplicate exceptions in full, in milliseconds
  val EXCEPTION_PRINT_INTERVAL =
    conf.getLong("spark.logging.exceptionPrintInterval", 10000)

  // Map of recent exceptions (identified by string representation and top stack frame) to
  // duplicate count (how many times the same exception has appeared) and time the full exception
  // was printed. This should ideally be an LRU map that can drop old exceptions automatically.
  private val recentExceptions = HashMap[String, (Int, Long)]()

  // Figure out the current map output tracker epoch and set it on all tasks
  val epoch = sched.mapOutputTracker.getEpoch
  logDebug("Epoch for " + taskSet + ": " + epoch)
  for (t <- tasks) {
    t.epoch = epoch
  }

  // Add all our tasks to the pending lists. We do this in reverse order
  // of task index so that tasks with low indices get launched first.
  for (i <- (0 until numTasks).reverse) {
    addPendingTask(i)
  }

  /**
   * Track the set of locality levels which are valid given the tasks locality preferences and
   * the set of currently available executors.  This is updated as executors are added and removed.
   * This allows a performance optimization, of skipping levels that aren't relevant (eg., skip
   * PROCESS_LOCAL if no tasks could be run PROCESS_LOCAL for the current set of executors).
   */
  //计算 有效的 task 本地特性,一般的 levels 除了 RACK_LOCAL都会有的
  private[scheduler] var myLocalityLevels = computeValidLocalityLevels()

  // Time to wait at each level
  //不同 级别的 task 本地性 等待时间 spark.locality.wait 默认 3s
  private[scheduler] var localityWaits: Array[Long] = myLocalityLevels.map(getLocalityWait)

  // Delay scheduling variables: we keep track of our current locality level and the time we
  // last launched a task at that level, and move up a level when localityWaits[curLevel] expires.
  // We then move down if we manage to launch a "more local" task.
  private var currentLocalityIndex = 0 // Index of our current locality level in validLocalityLevels
  private var lastLaunchTime = clock.getTimeMillis()  // Time we last launched a task at this level

  override def schedulableQueue: ConcurrentLinkedQueue[Schedulable] = null

  override def schedulingMode: SchedulingMode = SchedulingMode.NONE

  private[scheduler] var emittedTaskSizeWarning = false

  /** Add a task to all the pending-task lists that it should be on. */
  //add 一个 pending的任务 根据 task的本地性 放到尽量放到 队executor,host,rack, NoPrefs列中
  //这个方法在 本对象初始化的时候 已经调用过了
  private[spark] def addPendingTask(index: Int) {
    for (loc <- tasks(index).preferredLocations) { //获取 task的 本地特性
      loc match {
        case e: ExecutorCacheTaskLocation => //同一个 executor
          pendingTasksForExecutor.getOrElseUpdate(e.executorId, new ArrayBuffer) += index // pendingTasksForExecutor = //pending的 executor  和 task 的 map 增加这个的 task
        case e: HDFSCacheTaskLocation => //同一个 host 且可以在 hdfs上 缓存
          val exe = sched.getExecutorsAliveOnHost(loc.host) //这个 host上的 executor的 set
          exe match {
            case Some(set) =>
              for (e <- set) {//遍历这些 executor
                pendingTasksForExecutor.getOrElseUpdate(e, new ArrayBuffer) += index // pendingTasksForExecutor = //pending的 executor  和 task 的 map 增加这个的 task
              }
              logInfo(s"Pending task $index has a cached location at ${e.host} " +
                ", where there are executors " + set.mkString(","))
            case None => logDebug(s"Pending task $index has a cached location at ${e.host} " +
                ", but there are no executors alive there.")
          }
        case _ =>
      }
      pendingTasksForHost.getOrElseUpdate(loc.host, new ArrayBuffer) += index //pending 的 host 和 task 的 map
      for (rack <- sched.getRackForHost(loc.host)) { //获取所在的 机架
        pendingTasksForRack.getOrElseUpdate(rack, new ArrayBuffer) += index //pending 的 rack 和 task 的 map
      }
    }

    if (tasks(index).preferredLocations == Nil) {// 本地特性不存在
      pendingTasksWithNoPrefs += index //pending 的 无特性 和 task 的 map
    }
    //所有 pending的 task的 array
    allPendingTasks += index  // No point scanning this whole list to find the old task there
  }

  /**
   * Return the pending tasks list for a given executor ID, or an empty list if
   * there is no map entry for that host
   */
  //获取 这个 executor 上的 pending的 tasks
  private def getPendingTasksForExecutor(executorId: String): ArrayBuffer[Int] = {
    pendingTasksForExecutor.getOrElse(executorId, ArrayBuffer())
  }

  /**
   * Return the pending tasks list for a given host, or an empty list if
   * there is no map entry for that host
   */
  //获取这个 host 上的 pending 的 tasks
  private def getPendingTasksForHost(host: String): ArrayBuffer[Int] = {
    pendingTasksForHost.getOrElse(host, ArrayBuffer())
  }

  /**
   * Return the pending rack-local task list for a given rack, or an empty list if
   * there is no map entry for that rack
   */
  //获取这个 rack 上的 pending 的 tasks
  private def getPendingTasksForRack(rack: String): ArrayBuffer[Int] = {
    pendingTasksForRack.getOrElse(rack, ArrayBuffer())
  }

  /**
   * Dequeue a pending task from the given list and return its index.
   * Return None if the list is empty.
   * This method also cleans up any tasks in the list that have already
   * been launched, since we want that to happen lazily.
   */
  //在这个 host的executor的pending tasks 中 从后向前 拿到 没有运行成功和 没有copyRun的 task index
  private def dequeueTaskFromList(
      execId: String,
      host: String,
      list: ArrayBuffer[Int]): Option[Int] = {
    var indexOffset = list.size
    while (indexOffset > 0) {
      indexOffset -= 1
      val index = list(indexOffset) //拿到尾端元素
      if (!isTaskBlacklistedOnExecOrNode(index, execId, host)) { //spark 黑名单机制没有开启的话,isTaskBlacklistedOnExecOrNode 方法返回的是 false
        // This should almost always be list.trimEnd(1) to remove tail
        list.remove(indexOffset) //去处尾端 元素
        if (copiesRunning(index) == 0 && !successful(index)) {//这个任务 copiesRunning 状态是0  和 没有运行成功 , copiesRunning 表示 在运行和完成后 它一直是 有值的,
          //所以这里通过 copiesRunning(index) == 0 来过滤 正在运行和已经完成的 task
          return Some(index) //返回这个 task
        }
      }
    }
    None
  }

  /** Check whether a task is currently running an attempt on a given host */
  //指定的 taskAttempts 里面的 这个 list的 TaskInfo 里面 是否存在 这个 host的 taskInfo
  private def hasAttemptOnHost(taskIndex: Int, host: String): Boolean = {
    val x: Seq[TaskInfo] = taskAttempts(taskIndex)
    taskAttempts(taskIndex).exists(_.host == host) //这个 list的 TaskInfo 里面 是否存在 这个 host的 taskInfo
  }
//spark 黑名单机制 没有开启的话,taskSetBlacklistHelperOpt 应该是 None,所以这里应该返回false
  private def isTaskBlacklistedOnExecOrNode(index: Int, execId: String, host: String): Boolean = {
    taskSetBlacklistHelperOpt.exists { blacklist =>
      blacklist.isNodeBlacklistedForTask(host, index) ||
        blacklist.isExecutorBlacklistedForTask(execId, index)
    }
  }

  /**
   * Return a speculative task for a given executor if any are available. The task should not have
   * an attempt running on this host, in case the host is slow. In addition, the task should meet
   * the given locality constraint.
   */
  // Labeled as protected to allow tests to override providing speculative tasks if necessary
  // 处理推测task array 没有完成的 tasks,根据 task 本地化特性 在不同的 host 上启动推测 任务
  protected def dequeueSpeculativeTask(execId: String, host: String, locality: TaskLocality.Value)
    : Option[(Int, TaskLocality.Value)] =
  { //  推测 任务的 set集合 去掉 成功的 任务
    speculatableTasks.retain(index => !successful(index)) // Remove finished tasks from set

    def canRunOnHost(index: Int): Boolean = {
      !hasAttemptOnHost(index, host) &&
        !isTaskBlacklistedOnExecOrNode(index, execId, host) //默认 isTaskBlacklistedOnExecOrNode 返回false ,所以 有 这个任务没有在这个 host上运行的话 整个返回 true
    }

    if (!speculatableTasks.isEmpty) {//推测 任务的 set集合 中还有元素
      // Check for process-local tasks; note that tasks can be process-local
      // on multiple nodes when we replicate cached blocks, as in Spark Streaming
      for (index <- speculatableTasks if canRunOnHost(index)) {//过滤 没有在 这个 host上 运行的这个 index
        val prefs: Seq[TaskLocation] = tasks(index).preferredLocations //task 本地性
        val executors: Seq[String] = prefs.flatMap(_ match { //拿到这个 任务 可能 在 同一个 executor 启动的 所有的 executors
          case e: ExecutorCacheTaskLocation => Some(e.executorId)
          case _ => None
        });
        if (executors.contains(execId)) { //去除掉已经 在运行的这个 executor
          speculatableTasks -= index
          return Some((index, TaskLocality.PROCESS_LOCAL))
        }
      }

      // Check for node-local tasks
      if (TaskLocality.isAllowed(locality, TaskLocality.NODE_LOCAL)) {
        for (index <- speculatableTasks if canRunOnHost(index)) {
          val locations: Seq[String] = tasks(index).preferredLocations.map(_.host)
          if (locations.contains(host)) {
            speculatableTasks -= index
            return Some((index, TaskLocality.NODE_LOCAL)) //是否可以在 同一个 host的不同executor 上启动这个 任务
          }
        }
      }

      // Check for no-preference tasks
      if (TaskLocality.isAllowed(locality, TaskLocality.NO_PREF)) {
        for (index <- speculatableTasks if canRunOnHost(index)) {
          val locations = tasks(index).preferredLocations
          if (locations.size == 0) {
            speculatableTasks -= index
            return Some((index, TaskLocality.PROCESS_LOCAL)) //没有 本地性的偏好 则默认是 PROCESS_LOCAL
          }
        }
      }

      // Check for rack-local tasks
      if (TaskLocality.isAllowed(locality, TaskLocality.RACK_LOCAL)) {
        for (rack <- sched.getRackForHost(host)) {
          for (index <- speculatableTasks if canRunOnHost(index)) {
            val racks = tasks(index).preferredLocations.map(_.host).flatMap(sched.getRackForHost)
            if (racks.contains(rack)) {
              speculatableTasks -= index
              return Some((index, TaskLocality.RACK_LOCAL)) // 同一个 机架
            }
          }
        }
      }

      // Check for non-local tasks
      if (TaskLocality.isAllowed(locality, TaskLocality.ANY)) {
        for (index <- speculatableTasks if canRunOnHost(index)) {
          speculatableTasks -= index
          return Some((index, TaskLocality.ANY)) //任何位置
        }
      }
    }

    None
  }

  /**
   * Dequeue a pending task for a given node and return its index and locality level.
   * Only search for tasks matching the given locality constraint.
   *
   * @return An option containing (task index within the task set, locality, is speculative?)
   */
  //先 处理 pennding,最后处理 推测 tasks
  private def dequeueTask(execId: String, host: String, maxLocality: TaskLocality.Value)
    : Option[(Int, TaskLocality.Value, Boolean)] =
  {
    for (index <- dequeueTaskFromList(execId, host, getPendingTasksForExecutor(execId))) {
      // getPendingTasksForExecutor 获取 这个 executor 上的 pending的 tasks
      // 在这个 host的executor的pending tasks 中 从后向前 拿到 没有运行成功和 没有copyRun的 task index
      //这个任务 就是 PROCESS_LOCAL 级别的
      return Some((index, TaskLocality.PROCESS_LOCAL, false))
    }

    if (TaskLocality.isAllowed(maxLocality, TaskLocality.NODE_LOCAL)) { //如果允许 NODE_LOCAL 级别的话
      for (index <- dequeueTaskFromList(execId, host, getPendingTasksForHost(host))) {
        //getPendingTasksForHost 获取这个 host 上的 pending 的 tasks
        // 在这个 host的executor的pending tasks 中 从后向前 拿到 没有运行成功和 没有copyRun的 task index
        //这个任务 就是 NODE_LOCAL 级别的
        return Some((index, TaskLocality.NODE_LOCAL, false))
      }
    }

    if (TaskLocality.isAllowed(maxLocality, TaskLocality.NO_PREF)) {//如果允许 NO_PREF 级别的话
      // Look for noPref tasks after NODE_LOCAL for minimize cross-rack traffic
      for (index <- dequeueTaskFromList(execId, host, pendingTasksWithNoPrefs)) { //pendingTasksWithNoPrefs = pending 的 无特性 和 task 的 array
        //在这个 host的executor的pending tasks 中 从后向前 拿到 没有运行成功和 没有copyRun的 task index
        //这个任务 就是 PROCESS_LOCAL 级别的
        return Some((index, TaskLocality.PROCESS_LOCAL, false))
      }
    }

    if (TaskLocality.isAllowed(maxLocality, TaskLocality.RACK_LOCAL)) {//如果允许 RACK_LOCAL 级别的话
      for {
        rack <- sched.getRackForHost(host) //默认的机架的 位置信息 是 None
        index <- dequeueTaskFromList(execId, host, getPendingTasksForRack(rack))
      } {
        return Some((index, TaskLocality.RACK_LOCAL, false))
      }
    }

    if (TaskLocality.isAllowed(maxLocality, TaskLocality.ANY)) {//如果允许 ANY 级别的话
      for (index <- dequeueTaskFromList(execId, host, allPendingTasks)) {
        //allPendingTasks = 从 所有的 pending task 的 array中
        //在这个 host的executor的pending tasks 中 从后向前 拿到 没有运行成功和 没有copyRun的 task index
        //这个任务 就是 ANY 级别的
        return Some((index, TaskLocality.ANY, false))
      }
    }

    // find a speculative task if all others tasks have been scheduled
    //如果 已经 走到这一步的时候,说明所有的 pending的任务 都运行起来了,这个时候 就会启动 推测 任务
    // 处理推测task array 没有完成的 tasks,根据 task 本地化特性 在不同的 host 上启动推测 任务
    dequeueSpeculativeTask(execId, host, maxLocality).map {
      case (taskIndex, allowedLocality) => (taskIndex, allowedLocality, true)}
  }

  /**
   * Respond to an offer of a single executor from the scheduler by finding a task
   *
   * NOTE: this function is either called with a maxLocality which
   * would be adjusted by delay scheduling algorithm or it will be with a special
   * NO_PREF locality which will be not modified
   *
   * @param execId the executor Id of the offered resource
   * @param host  the host Id of the offered resource
   * @param maxLocality the maximum locality we want to schedule the tasks at
   */
  @throws[TaskNotSerializableException]
  //在 此 host 的 execId 的maxLocality 条件下 调度任务,返回 TaskDescription 信息
  //这个方法 会在 TaskSchedulerImpl 的 resourceOfferSingleTaskSet 方法中调用
  def resourceOffer(
      execId: String,
      host: String,
      maxLocality: TaskLocality.TaskLocality)
    : Option[TaskDescription] =
  {
    val offerBlacklisted = taskSetBlacklistHelperOpt.exists { blacklist => //没有开启 spark 的 黑名单机制的话 是 false
      blacklist.isNodeBlacklistedForTaskSet(host) ||
        blacklist.isExecutorBlacklistedForTaskSet(execId)
    }
    if (!isZombie && !offerBlacklisted) {//isZombie 是 false 是正常状态,所以一般这里 是 true
      val curTime = clock.getTimeMillis()

      var allowedLocality = maxLocality

      if (maxLocality != TaskLocality.NO_PREF) {
        allowedLocality = getAllowedLocalityLevel(curTime)//获取 此刻 的 允许的 task 本地化级别(有pending的任务的 task 本地化特性) 由 PROCESS_LOCAL-》NODE_LOCAL-》NO_PREF-》RACK_LOCAL
        if (allowedLocality > maxLocality) {//如果 allowedLocality 的比  maxLocality的 宽松
          // We're not allowed to search for farther-away tasks
          allowedLocality = maxLocality //更新 allowedLocality,因为 maxLocality 这个是要求的 特性,更接近 数据的位置
        }
      }
      //dequeueTask 先 处理 pennding,最后处理 推测 tasks
      dequeueTask(execId, host, allowedLocality).map { case ((index, taskLocality, speculative)) =>
        // Found a task; do some bookkeeping and return a task description
        val task: Task[_] = tasks(index) //拿到这个 task,这里的task是 一个Stage的TaskS 中的task
        val taskId = sched.newTaskId() //生成taskID
        // Do various bookkeeping
        copiesRunning(index) += 1 //记录这个 task 正在运行的 数量
        val attemptNum = taskAttempts(index).size //拿到这个 array 的长度。默认 一个
        val info = new TaskInfo(taskId, index, attemptNum, curTime,
          execId, host, taskLocality, speculative)
        taskInfos(taskId) = info //更新 taskInfos 信息,在 handleSuccessfulTask 和 handleFailedTask 方法中 以便可以获取到
        taskAttempts(index) = info :: taskAttempts(index)
        // Update our locality level for delay scheduling
        // NO_PREF will not affect the variables related to delay scheduling
        if (maxLocality != TaskLocality.NO_PREF) {
          currentLocalityIndex = getLocalityIndex(taskLocality)
          lastLaunchTime = curTime
        }
        // Serialize and return the task
        val serializedTask: ByteBuffer = try {
          ser.serialize(task)
        } catch {
          // If the task cannot be serialized, then there's no point to re-attempt the task,
          // as it will always fail. So just abort the whole task-set.
          case NonFatal(e) =>
            val msg = s"Failed to serialize task $taskId, not attempting to retry it."
            logError(msg, e)
            abort(s"$msg Exception during serialization: $e")
            throw new TaskNotSerializableException(e)
        }
        if (serializedTask.limit() > TaskSetManager.TASK_SIZE_TO_WARN_KB * 1024 &&
          !emittedTaskSizeWarning) {
          emittedTaskSizeWarning = true
          logWarning(s"Stage ${task.stageId} contains a task of very large size " +
            s"(${serializedTask.limit() / 1024} KB). The maximum recommended task size is " +
            s"${TaskSetManager.TASK_SIZE_TO_WARN_KB} KB.") //task 序列化后的大小警告限制 100K
        }
        addRunningTask(taskId)  //更新runningTasksSet 和 Poll的 runningTasks

        // We used to log the time it takes to serialize the task, but task size is already
        // a good proxy to task serialization time.
        // val timeTaken = clock.getTime() - startTime
        val taskName = s"task ${info.id} in stage ${taskSet.id}" //某个Stage中的某个task
        logInfo(s"Starting $taskName (TID $taskId, $host, executor ${info.executorId}, " +
          s"partition ${task.partitionId}, $taskLocality, ${serializedTask.limit()} bytes)")

        sched.dagScheduler.taskStarted(task, info)
        new TaskDescription( //返回 这个task描述类的对象
          taskId,
          attemptNum,
          execId,
          taskName,
          index,
          addedFiles,
          addedJars,
          task.localProperties,
          serializedTask)
      }
    } else {
      None
    }
  }

  // 可能 Stage tasks 已经 运行完成,这个方法 在本类内部调用
  private def maybeFinishTaskSet() {
    if (isZombie && runningTasks == 0) {//当isZombie 为 true 和 runningTasks 的数目是 0 的时候,表示 这个Stage的所有Tasks 都已经完成了
      sched.taskSetFinished(this)//调用 TaskSchedulerImpl 的 taskSetFinished 方法
      if (tasksSuccessful == numTasks) {
        blacklistTracker.foreach(_.updateBlacklistForSuccessfulTaskSet(
          taskSet.stageId,
          taskSet.stageAttemptId,
          taskSetBlacklistHelperOpt.get.execToFailures))
      }
    }
  }

  /**
   * Get the level we can launch tasks according to delay scheduling, based on current wait time.
   */
  //获取 此刻 的 允许的 task 本地化级别(有pending的任务的 task 本地化特性) 由 PROCESS_LOCAL-》NODE_LOCAL-》NO_PREF-》RACK_LOCAL
  private def getAllowedLocalityLevel(curTime: Long): TaskLocality.TaskLocality = {
    // Remove the scheduled or finished tasks lazily
    //pendingTaskIds 移除已经 running 和 完成的 task,遇到 没有在 running 和 已经运行完成 的 话 返回 true
    def tasksNeedToBeScheduledFrom(pendingTaskIds: ArrayBuffer[Int]): Boolean = {
      var indexOffset = pendingTaskIds.size
      while (indexOffset > 0) {
        indexOffset -= 1
        val index = pendingTaskIds(indexOffset)
        if (copiesRunning(index) == 0 && !successful(index)) { //这个 任务 没有在 running 和 已经运行完成 的 话 返回 true
          return true
        } else {
          pendingTaskIds.remove(indexOffset) //移除已经 running 和 完成的 task
        }
      }
      false
    }
    // Walk through the list of tasks that can be scheduled at each location and returns true
    // if there are any tasks that still need to be scheduled. Lazily cleans up tasks that have
    // already been scheduled.
    //清理这个 pendingTasks 的 非pending tasks, 返回是否还有 pending的 任务
    def moreTasksToRunIn(pendingTasks: HashMap[String, ArrayBuffer[Int]]): Boolean = {
      val emptyKeys = new ArrayBuffer[String]
      val hasTasks: Boolean = pendingTasks.exists {
        case (id: String, tasks: ArrayBuffer[Int]) =>
          if (tasksNeedToBeScheduledFrom(tasks)) { // tasksNeedToBeScheduledFrom pendingTaskIds 移除已经 running 和 完成的 task,遇到 没有在 running 和 已经运行完成 的 话 返回 true
            true
          } else {
            emptyKeys += id //这个 key下面 任务都 没有在 pending的话  加入到 emptyKeys
            false
          }
      }
      // The key could be executorId, host or rackId
      emptyKeys.foreach(id => pendingTasks.remove(id)) //清理这个 pendingTasks 的 value 是空的 key-value
      hasTasks //这里返回是 true 的话 说明 还有 pending的任务
    }

    while (currentLocalityIndex < myLocalityLevels.length - 1) {// currentLocalityIndex 从 0 开始
      val moreTasks: Boolean = myLocalityLevels(currentLocalityIndex) match {
        case TaskLocality.PROCESS_LOCAL => moreTasksToRunIn(pendingTasksForExecutor)//同一个 executor的 pending队列 ; moreTasksToRunIn返回是true的话,说明 还有 pending的任务
        case TaskLocality.NODE_LOCAL => moreTasksToRunIn(pendingTasksForHost)//同一个 host的pending对列
        case TaskLocality.NO_PREF => pendingTasksWithNoPrefs.nonEmpty //没有 任务本地性偏好的 tasks
        case TaskLocality.RACK_LOCAL => moreTasksToRunIn(pendingTasksForRack)
      }
      if (!moreTasks) {//这里的话,就是 没有pending的任务了
        // This is a performance optimization: if there are no more tasks that can
        // be scheduled at a particular locality level, there is no point in waiting
        // for the locality wait timeout (SPARK-4939).
        lastLaunchTime = curTime //更新 lastLaunchTime
        logDebug(s"No tasks for locality level ${myLocalityLevels(currentLocalityIndex)}, " +
          s"so moving to locality level ${myLocalityLevels(currentLocalityIndex + 1)}")
        currentLocalityIndex += 1
      } else if (curTime - lastLaunchTime >= localityWaits(currentLocalityIndex)) { //如果 curTime - lastLaunchTime差值 超过 设置的 (task 本地性 等待时间 spark.locality.wait )
        // Jump to the next locality level, and reset lastLaunchTime so that the next locality
        // wait timer doesn't immediately expire
        lastLaunchTime += localityWaits(currentLocalityIndex) //更新 lastLaunchTime
        logDebug(s"Moving to ${myLocalityLevels(currentLocalityIndex + 1)} after waiting for " +
          s"${localityWaits(currentLocalityIndex)}ms")
        currentLocalityIndex += 1
      } else {
        return myLocalityLevels(currentLocalityIndex) //这个级别的 TaskLocality
      }
    }
    myLocalityLevels(currentLocalityIndex)//这个级别的 TaskLocality
  }

  /**
   * Find the index in myLocalityLevels for a given locality. This is also designed to work with
   * localities that are not in myLocalityLevels (in case we somehow get those) by returning the
   * next-biggest level we have. Uses the fact that the last value in myLocalityLevels is ANY.
   */
  //获取 locality 在 myLocalityLevels 中的 index
  def getLocalityIndex(locality: TaskLocality.TaskLocality): Int = {
    var index = 0
    while (locality > myLocalityLevels(index)) {
      index += 1
    }
    index
  }

  /**
   * Check whether the given task set has been blacklisted to the point that it can't run anywhere.
   *
   * It is possible that this taskset has become impossible to schedule *anywhere* due to the
   * blacklist.  The most common scenario would be if there are fewer executors than
   * spark.task.maxFailures. We need to detect this so we can fail the task set, otherwise the job
   * will hang.
   *
   * There's a tradeoff here: we could make sure all tasks in the task set are schedulable, but that
   * would add extra time to each iteration of the scheduling loop. Here, we take the approach of
   * making sure at least one of the unscheduled tasks is schedulable. This means we may not detect
   * the hang as quickly as we could have, but we'll always detect the hang eventually, and the
   * method is faster in the typical case. In the worst case, this method can take
   * O(maxTaskFailures + numTasks) time, but it will be faster when there haven't been any task
   * failures (this is because the method picks one unscheduled task, and then iterates through each
   * executor until it finds one that the task isn't blacklisted on).
   */
  private[scheduler] def abortIfCompletelyBlacklisted(//spark 的 黑名单 默认关闭的话 blacklistTrackerOpt 是 None ;这个也是为 None
      hostToExecutors: HashMap[String, HashSet[String]]): Unit = {
    taskSetBlacklistHelperOpt.foreach { taskSetBlacklist =>
      val appBlacklist = blacklistTracker.get
      // Only look for unschedulable tasks when at least one executor has registered. Otherwise,
      // task sets will be (unnecessarily) aborted in cases when no executors have registered yet.
      if (hostToExecutors.nonEmpty) {
        // find any task that needs to be scheduled
        val pendingTask: Option[Int] = {
          // usually this will just take the last pending task, but because of the lazy removal
          // from each list, we may need to go deeper in the list.  We poll from the end because
          // failed tasks are put back at the end of allPendingTasks, so we're more likely to find
          // an unschedulable task this way.
          val indexOffset = allPendingTasks.lastIndexWhere { indexInTaskSet =>
            copiesRunning(indexInTaskSet) == 0 && !successful(indexInTaskSet)
          }
          if (indexOffset == -1) {
            None
          } else {
            Some(allPendingTasks(indexOffset))
          }
        }

        pendingTask.foreach { indexInTaskSet =>
          // try to find some executor this task can run on.  Its possible that some *other*
          // task isn't schedulable anywhere, but we will discover that in some later call,
          // when that unschedulable task is the last task remaining.
          val blacklistedEverywhere = hostToExecutors.forall { case (host, execsOnHost) =>
            // Check if the task can run on the node
            val nodeBlacklisted =
              appBlacklist.isNodeBlacklisted(host) ||
                taskSetBlacklist.isNodeBlacklistedForTaskSet(host) ||
                taskSetBlacklist.isNodeBlacklistedForTask(host, indexInTaskSet)
            if (nodeBlacklisted) {
              true
            } else {
              // Check if the task can run on any of the executors
              execsOnHost.forall { exec =>
                appBlacklist.isExecutorBlacklisted(exec) ||
                  taskSetBlacklist.isExecutorBlacklistedForTaskSet(exec) ||
                  taskSetBlacklist.isExecutorBlacklistedForTask(exec, indexInTaskSet)
              }
            }
          }
          if (blacklistedEverywhere) {
            val partition = tasks(indexInTaskSet).partitionId
            abort(s"""
              |Aborting $taskSet because task $indexInTaskSet (partition $partition)
              |cannot run anywhere due to node and executor blacklist.
              |Most recent failure:
              |${taskSetBlacklist.getLatestFailureReason}
              |
              |Blacklisting behavior can be configured via spark.blacklist.*.
              |""".stripMargin)
          }
        }
      }
    }
  }

  /**
   * Marks the task as getting result and notifies the DAG Scheduler
   */
  def handleTaskGettingResult(tid: Long): Unit = {
    val info = taskInfos(tid)
    info.markGettingResult(clock.getTimeMillis())
    sched.dagScheduler.taskGettingResult(info)
  }

  /**
   * Check whether has enough quota to fetch the result with `size` bytes
   */
  //计算 driver 获取的结果量大小 是否超过  spark.driver.maxResultSize,如果超过 返回false 就是不能 获取到更多的result
  def canFetchMoreResults(size: Long): Boolean = sched.synchronized {
    totalResultSize += size
    calculatedTasks += 1
    if (maxResultSize > 0 && totalResultSize > maxResultSize) {
      val msg = s"Total size of serialized results of ${calculatedTasks} tasks " +
        s"(${Utils.bytesToString(totalResultSize)}) is bigger than spark.driver.maxResultSize " +
        s"(${Utils.bytesToString(maxResultSize)})"
      logError(msg)
      abort(msg)
      false
    } else {
      true
    }
  }

  /**
   * Marks a task as successful and notifies the DAGScheduler that the task has ended.
   */
  //处理成功的 task,会在 TaskSchedulerImpl的 handleSuccessfulTask 方法中被调用
  //开始是由 executor 执行 task 完成之后,向 driver的 CoarseGrainedSchedulerbackend 发送 StatusUpdate 信息后,调用 TaskSchedulerImpl 的
  //statusUpdate ,statusUpdate 里面根据 task 的完成状态 通过 TaskResultGetter和TaskSchedulerImpl 传递调用本类的 handleSuccessfulTask 或者 handleFailedTask
  def handleSuccessfulTask(tid: Long, result: DirectTaskResult[_]): Unit = {
    val info = taskInfos(tid) //拿到info信息
    val index = info.index
    info.markFinished(TaskState.FINISHED, clock.getTimeMillis()) //标记成功
    if (speculationEnabled) { //spark 推测机制开启的话,
      successfulTaskDurations.insert(info.duration)
    }
    removeRunningTask(tid)//从 runningTasksSet 和 Poll  中移除这个 task id

    // Kill any other attempts for the same task (since those are unnecessary now that one
    // attempt completed successfully).
    for (attemptInfo <- taskAttempts(index) if attemptInfo.running) {
      logInfo(s"Killing attempt ${attemptInfo.attemptNumber} for task ${attemptInfo.id} " +
        s"in stage ${taskSet.id} (TID ${attemptInfo.taskId}) on ${attemptInfo.host} " +
        s"as the attempt ${info.attemptNumber} succeeded on ${info.host}")
      killedByOtherAttempt += attemptInfo.taskId
      sched.backend.killTask(
        attemptInfo.taskId,
        attemptInfo.executorId,
        interruptThread = true,
        reason = "another attempt succeeded")
    }
    if (!successful(index)) {
      tasksSuccessful += 1
      logInfo(s"Finished task ${info.id} in stage ${taskSet.id} (TID ${info.taskId}) in" +
        s" ${info.duration} ms on ${info.host} (executor ${info.executorId})" +
        s" ($tasksSuccessful/$numTasks)")
      // Mark successful and stop if all the tasks have succeeded.
      successful(index) = true
      if (tasksSuccessful == numTasks) {
        isZombie = true
      }
    } else {
      logInfo("Ignoring task-finished event for " + info.id + " in stage " + taskSet.id +
        " because task " + index + " has already completed successfully")
    }
    // There may be multiple tasksets for this stage -- we let all of them know that the partition
    // was completed.  This may result in some of the tasksets getting completed.
    sched.markPartitionCompletedInAllTaskSets(stageId, tasks(index).partitionId, info)//
    // This method is called by "TaskSchedulerImpl.handleSuccessfulTask" which holds the
    // "TaskSchedulerImpl" lock until exiting. To avoid the SPARK-7655 issue, we should not
    // "deserialize" the value when holding a lock to avoid blocking other threads. So we call
    // "result.value()" in "TaskResultGetter.enqueueSuccessfulTask" before reaching here.
    // Note: "result.value()" only deserializes the value when it's called at the first time, so
    // here "result.value()" just returns the value and won't block other threads.
    sched.dagScheduler.taskEnded(tasks(index), Success, result.value(), result.accumUpdates, info)
    maybeFinishTaskSet() //一个task 运行完成之后,可能就是这个Stage的最后一个任务,所以需要检查 这个 Stage的tasks 是否都已经完成
  }

  //partitionId 是 tasks.zipWithIndex
  //标记 这个 partitionId 的task 完成,当一个 task完成的时候,可能这个task 就是这个Stage的最后一个任务,所以要 maybeFinishTaskSet
  //在 TaskSchedulerImpl 中 markPartitionCompletedInAllTaskSets 方法中会使用 会使用
  private[scheduler] def markPartitionCompleted(partitionId: Int, taskInfo: TaskInfo): Unit = {
    partitionToIndex.get(partitionId).foreach { index =>
      if (!successful(index)) {//还没有成功的话 ,执行下面
        if (speculationEnabled && !isZombie) {
          successfulTaskDurations.insert(taskInfo.duration)
        }
        tasksSuccessful += 1 //标记成功
        successful(index) = true
        if (tasksSuccessful == numTasks) { //如果 所有的 任务 都运行成功了,标记这个 TaskSet 的所有的任务成功
          isZombie = true
        }
        maybeFinishTaskSet() //一个task 运行完成之后,可能就是这个Stage的最后一个任务,所以需要检查 这个 Stage的tasks 是否都已经完成
      }
    }
  }

  /**
   * Marks the task as failed, re-adds it to the list of pending tasks, and notifies the
   * DAG Scheduler.
   */
  //处理失败的任务,在一些 情况下会 再加入到 pending 队列去
  //处理成功的 task,会在 TaskSchedulerImpl的 handleFailedTask 方法中被调用
  //开始是由 executor 执行 task 完成之后,向 driver的 CoarseGrainedSchedulerbackend 发送 StatusUpdate 信息后,调用 TaskSchedulerImpl 的
  //statusUpdate ,statusUpdate 里面根据 task 的完成状态 通过 TaskResultGetter和TaskSchedulerImpl 传递调用本类的 handleSuccessfulTask 或者 handleFailedTask
  def handleFailedTask(tid: Long, state: TaskState, reason: TaskFailedReason) {
    val info = taskInfos(tid) //拿到 taskInfo信息
    if (info.failed || info.killed) {//如果这个 任务 已经failed或者killed 则直接返回
      return
    }
    removeRunningTask(tid)//从 runningTasksSet 和 Poll  中移除这个 task id
    info.markFinished(state, clock.getTimeMillis()) //标记这个 任务 已经完成
    val index = info.index
    copiesRunning(index) -= 1 //正在运行的任务数 -1
    var accumUpdates: Seq[AccumulatorV2[_, _]] = Seq.empty
    val failureReason = s"Lost task ${info.id} in stage ${taskSet.id} (TID $tid, ${info.host}," +
      s" executor ${info.executorId}): ${reason.toErrorString}"
    val failureException: Option[Throwable] = reason match {
      case fetchFailed: FetchFailed => //获取运行结果失败
        logWarning(failureReason)
        if (!successful(index)) { //标记为 success
          successful(index) = true
          tasksSuccessful += 1
        }
        isZombie = true

        if (fetchFailed.bmAddress != null) {
          blacklistTracker.foreach(_.updateBlacklistForFetchFailure(
            fetchFailed.bmAddress.host, fetchFailed.bmAddress.executorId))
        }

        None

      case ef: ExceptionFailure =>
        // ExceptionFailure's might have accumulator updates
        accumUpdates = ef.accums
        if (ef.className == classOf[NotSerializableException].getName) {
          // If the task result wasn't serializable, there's no point in trying to re-execute it.
          logError("Task %s in stage %s (TID %d) had a not serializable result: %s; not retrying"
            .format(info.id, taskSet.id, tid, ef.description))
          abort("Task %s in stage %s (TID %d) had a not serializable result: %s".format(
            info.id, taskSet.id, tid, ef.description))
          return
        }
        val key = ef.description
        val now = clock.getTimeMillis()
        val (printFull, dupCount) = {
          if (recentExceptions.contains(key)) {
            val (dupCount, printTime) = recentExceptions(key)
            if (now - printTime > EXCEPTION_PRINT_INTERVAL) {
              recentExceptions(key) = (0, now)
              (true, 0)
            } else {
              recentExceptions(key) = (dupCount + 1, printTime)
              (false, dupCount + 1)
            }
          } else {
            recentExceptions(key) = (0, now)
            (true, 0)
          }
        }
        if (printFull) {
          logWarning(failureReason)
        } else {
          logInfo(
            s"Lost task ${info.id} in stage ${taskSet.id} (TID $tid) on ${info.host}, executor" +
              s" ${info.executorId}: ${ef.className} (${ef.description}) [duplicate $dupCount]")
        }
        ef.exception

      case e: ExecutorLostFailure if !e.exitCausedByApp =>
        logInfo(s"Task $tid failed because while it was being computed, its executor " +
          "exited for a reason unrelated to the task. Not counting this failure towards the " +
          "maximum number of failures for the task.")
        None

      case e: TaskFailedReason =>  // TaskResultLost, TaskKilled, and others
        logWarning(failureReason)
        None
    }

    sched.dagScheduler.taskEnded(tasks(index), reason, null, accumUpdates, info)

    if (!isZombie && reason.countTowardsTaskFailures) {
      assert (null != failureReason)
      taskSetBlacklistHelperOpt.foreach(_.updateBlacklistForFailedTask(
        info.host, info.executorId, index, failureReason))
      numFailures(index) += 1
      if (numFailures(index) >= maxTaskFailures) {
        logError("Task %d in stage %s failed %d times; aborting job".format(
          index, taskSet.id, maxTaskFailures))
        abort("Task %d in stage %s failed %d times, most recent failure: %s\nDriver stacktrace:"
          .format(index, taskSet.id, maxTaskFailures, failureReason), failureException)
        return
      }
    }

    if (successful(index)) {//如果被标记 success 则不会继续 加入到 pending 队列中去
      logInfo(s"Task ${info.id} in stage ${taskSet.id} (TID $tid) failed, but the task will not" +
        s" be re-executed (either because the task failed with a shuffle data fetch failure," +
        s" so the previous stage needs to be re-run, or because a different copy of the task" +
        s" has already succeeded).")
    } else {
      addPendingTask(index) //继续 加入到 pending 队列中去,重新运行
    }

    maybeFinishTaskSet()//一个task 运行完成之后,可能就是这个Stage的最后一个任务,所以需要检查 这个 Stage的tasks 是否都已经完成
  }

  //手动 taskSetFailed
  def abort(message: String, exception: Option[Throwable] = None): Unit = sched.synchronized {
    // TODO: Kill running tasks if we were not terminated due to a Mesos error
    sched.dagScheduler.taskSetFailed(taskSet, message, exception) //通知 DAGScheduler 这个 taskSet 任务失败,DAGScheduler 里面会 使用 TaskSchedulerImpl 取消这个 Stage 的所有的任务
    isZombie = true //手动设置异常,停止 tasks的运行
    maybeFinishTaskSet() //一个task 运行完成之后,可能就是这个Stage的最后一个任务,所以需要检查 这个 Stage的tasks 是否都已经完成
  }

  /** If the given task ID is not in the set of running tasks, adds it.
   *
   * Used to keep track of the number of running tasks, for enforcing scheduling policies.
   */
  //runningTasksSet 增加这个 tid,Pool中也 增加 increaseRunningTasks
  //在 本类的 resourceOffer 方法中使用
  def addRunningTask(tid: Long) {
    if (runningTasksSet.add(tid) && parent != null) {// runningTasksSet 正在running task 的set
      parent.increaseRunningTasks(1) //更新 Poll 中的runningTasks 的 数量
    }
  }

  /** If the given task ID is in the set of running tasks, removes it. */
  //从 runningTasksSet 和 Poll  中移除这个 task id
  //在 本类的 handleSuccessfulTask 和 handleFailedTask 方法中使用
  def removeRunningTask(tid: Long) {
    if (runningTasksSet.remove(tid) && parent != null) { //runningTasksSet 正在running task 的数量
      parent.decreaseRunningTasks(1)
    }
  }

  override def getSchedulableByName(name: String): Schedulable = {
    null
  }

  override def addSchedulable(schedulable: Schedulable) {}

  override def removeSchedulable(schedulable: Schedulable) {}

  override def getSortedTaskSetQueue(): ArrayBuffer[TaskSetManager] = {
    val sortedTaskSetQueue = new ArrayBuffer[TaskSetManager]()
    sortedTaskSetQueue += this
    sortedTaskSetQueue
  }

  /** Called by TaskScheduler when an executor is lost so we can re-enqueue our tasks */
  //TaskSchedulerImpl 的 removeExecutor方法 调用Pool 中的 executorLost 方法,  Pool 中的 executorLost会调用 本方法
  override def executorLost(execId: String, host: String, reason: ExecutorLossReason) {
    // Re-enqueue any tasks that ran on the failed executor if this is a shuffle map stage,
    // and we are not using an external shuffle server which could serve the shuffle outputs.
    // The reason is the next stage wouldn't be able to fetch the data from this dead executor
    // so we would need to rerun these tasks on other executors.
    if (tasks(0).isInstanceOf[ShuffleMapTask] && !env.blockManager.externalShuffleServiceEnabled
        && !isZombie) {
      for ((tid, info) <- taskInfos if info.executorId == execId) {
        val index = taskInfos(tid).index
        if (successful(index) && !killedByOtherAttempt.contains(tid)) {
          successful(index) = false
          copiesRunning(index) -= 1
          tasksSuccessful -= 1
          addPendingTask(index)
          // Tell the DAGScheduler that this task was resubmitted so that it doesn't think our
          // stage finishes when a total of tasks.size tasks finish.
          sched.dagScheduler.taskEnded(
            tasks(index), Resubmitted, null, Seq.empty, info)
        }
      }
    }
    for ((tid, info) <- taskInfos if info.running && info.executorId == execId) {
      val exitCausedByApp: Boolean = reason match {
        case exited: ExecutorExited => exited.exitCausedByApp
        case ExecutorKilled => false
        case _ => true
      }
      handleFailedTask(tid, TaskState.FAILED, ExecutorLostFailure(info.executorId, exitCausedByApp,
        Some(reason.toString)))
    }
    // recalculate valid locality levels and waits when executor is lost
    recomputeLocality()
  }

  /**
   * Check for tasks to be speculated and return true if there are any. This is called periodically
   * by the TaskScheduler.
   *
   */
  //在 Poll的checkSpeculatableTasks 中调用这个方法
  override def checkSpeculatableTasks(minTimeToSpeculation: Int): Boolean = {
    // Can't speculate if we only have one task, and no need to speculate if the task set is a
    // zombie.
    if (isZombie || numTasks == 1) { //如果只有 1个 任务 那就 不用推测执行了
      return false
    }
    var foundTasks = false
    val minFinishedForSpeculation = (SPECULATION_QUANTILE * numTasks).floor.toInt // SPECULATION_QUANTILE = 0。75
    logDebug("Checking for speculative tasks: minFinished = " + minFinishedForSpeculation)

    if (tasksSuccessful >= minFinishedForSpeculation && tasksSuccessful > 0) { //只有超过一定的阀值 才会 开始推测任务,成功的task数量超过一定量
      val time = clock.getTimeMillis()
      val medianDuration: Double = successfulTaskDurations.median
      val threshold = max(SPECULATION_MULTIPLIER * medianDuration, minTimeToSpeculation)
      // TODO: Threshold should also look at standard deviation of task durations and have a lower
      // bound based on that.
      logDebug("Task length threshold for speculation: " + threshold)
      for (tid <- runningTasksSet) {
        val info = taskInfos(tid)
        val index = info.index
        if (!successful(index) && copiesRunning(index) == 1 && info.timeRunning(time) > threshold && //这个task 已经运行超过了一定的阀值
          !speculatableTasks.contains(index)) { //满足 推测任务的 要求
          logInfo(
            "Marking task %d in stage %s (on %s) as speculatable because it ran more than %.0f ms"
              .format(index, taskSet.id, info.host, threshold))
          speculatableTasks += index //加入到 推测Tasks中去
          sched.dagScheduler.speculativeTaskSubmitted(tasks(index)) //提交这个 task
          foundTasks = true
        }
      }
    }
    foundTasks //有满足条件的推测任务 则返回true
  }

  private def getLocalityWait(level: TaskLocality.TaskLocality): Long = {
    val defaultWait = conf.get(config.LOCALITY_WAIT) //spark.locality.wait 默认 3s
    val localityWaitKey = level match {
      case TaskLocality.PROCESS_LOCAL => "spark.locality.wait.process"
      case TaskLocality.NODE_LOCAL => "spark.locality.wait.node"
      case TaskLocality.RACK_LOCAL => "spark.locality.wait.rack"
      case _ => null
    }

    if (localityWaitKey != null) {
      conf.getTimeAsMs(localityWaitKey, defaultWait.toString)
    } else {
      0L
    }
  }

  /**
   * Compute the locality levels used in this TaskSet. Assumes that all tasks have already been
   * added to queues using addPendingTask.
   *
   */
  //计算 有效的 task 本地特性,一般的 levels 除了 RACK_LOCAL都会有的
  private def computeValidLocalityLevels(): Array[TaskLocality.TaskLocality] = {
    import TaskLocality.{PROCESS_LOCAL, NODE_LOCAL, NO_PREF, RACK_LOCAL, ANY}
    val levels = new ArrayBuffer[TaskLocality.TaskLocality]
    if (!pendingTasksForExecutor.isEmpty &&
        pendingTasksForExecutor.keySet.exists(sched.isExecutorAlive(_))) { //pending的 executor  和 task 的 map 不为空 和  这个队列中 存在的 executor 中有任务运行
      levels += PROCESS_LOCAL //级别中加入 PROCESS_LOCAL
    }
    if (!pendingTasksForHost.isEmpty &&
        pendingTasksForHost.keySet.exists(sched.hasExecutorsAliveOnHost(_))) {
      levels += NODE_LOCAL //级别中加入 NODE_LOCAL
    }
    if (!pendingTasksWithNoPrefs.isEmpty) {
      levels += NO_PREF //级别中加入 NO_PREF
    }
    if (!pendingTasksForRack.isEmpty &&
        pendingTasksForRack.keySet.exists(sched.hasHostAliveOnRack(_))) {
      levels += RACK_LOCAL
    }
    levels += ANY //级别中加入 ANY
    logDebug("Valid locality levels for " + taskSet + ": " + levels.mkString(", "))
    levels.toArray
  }

  def recomputeLocality() {
    val previousLocalityLevel = myLocalityLevels(currentLocalityIndex)
    myLocalityLevels = computeValidLocalityLevels()
    localityWaits = myLocalityLevels.map(getLocalityWait)
    currentLocalityIndex = getLocalityIndex(previousLocalityLevel)
  }

  def executorAdded() {
    recomputeLocality()
  }
}

object TaskSetManager

private[spark] object TaskSetManager {
  // The user will be warned if any stages contain a task that has a serialized size greater than
  // this.
  val TASK_SIZE_TO_WARN_KB = 100
}

TaskResultGetter

TaskResultGetter主要的作用是在 executor 完成一个task之后,根据TaskState的状态,TaskState.FINISHED的话 使用 taskResultGetter.enqueueSuccessfulTask 方法;TaskState.FAILED|TaskState.KILLED|TaskState.LOST使用enqueueFailedTask的方法。
enqueueSuccessfulTask 主要是反序列化 拿到 executor的task 执行结果;
enqueueFailedTask 主要目的是反序列化 拿到 任务错误的 reason。

//在 TaskSchedulerImpl line 142 中 被实例化的
private[spark] class TaskResultGetter(sparkEnv: SparkEnv, scheduler: TaskSchedulerImpl)
  extends Logging {

  private val THREADS = sparkEnv.conf.getInt("spark.resultGetter.threads", 4)

  // Exposed for testing.
  protected val getTaskResultExecutor: ExecutorService =
    ThreadUtils.newDaemonFixedThreadPool(THREADS, "task-result-getter")

  // Exposed for testing.
  protected val serializer = new ThreadLocal[SerializerInstance] {
    override def initialValue(): SerializerInstance = {
      sparkEnv.closureSerializer.newInstance()
    }
  }

  protected val taskResultSerializer = new ThreadLocal[SerializerInstance] {
    override def initialValue(): SerializerInstance = {
      sparkEnv.serializer.newInstance()
    }
  }
//出对 成功的task
  //在 TaskSchedulerImpl 中 的 statusUpdate 中调用 当 task 的执行状态是 TaskState.FINISHED
  //主要是反序列化 拿到 executor的task 执行结果
  def enqueueSuccessfulTask(
      taskSetManager: TaskSetManager,
      tid: Long,
      serializedData: ByteBuffer): Unit = {
    getTaskResultExecutor.execute(new Runnable {
      override def run(): Unit = Utils.logUncaughtExceptions {
        try {
          val (result, size) = serializer.get().deserialize[TaskResult[_]](serializedData) match {
            case directResult: DirectTaskResult[_] =>
              if (!taskSetManager.canFetchMoreResults(serializedData.limit())) { //超过大小限制
                return
              }
              // deserialize "value" without holding any lock so that it won't block other threads.
              // We should call it here, so that when it's called again in
              // "TaskSetManager.handleSuccessfulTask", it does not need to deserialize the value.
              directResult.value(taskResultSerializer.get()) //value 方法内部已经完成了反序列化操作 拿到 executor task 的执行结果
              (directResult, serializedData.limit())
            case IndirectTaskResult(blockId, size) =>
              if (!taskSetManager.canFetchMoreResults(size)) {
                // dropped by executor if size is larger than maxResultSize
                sparkEnv.blockManager.master.removeBlock(blockId)
                return
              }
              logDebug("Fetching indirect task result for TID %s".format(tid))
              scheduler.handleTaskGettingResult(taskSetManager, tid) //
              val serializedTaskResult = sparkEnv.blockManager.getRemoteBytes(blockId)
              if (!serializedTaskResult.isDefined) {
                /* We won't be able to get the task result if the machine that ran the task failed
                 * between when the task ended and when we tried to fetch the result, or if the
                 * block manager had to flush the result. */
                scheduler.handleFailedTask(
                  taskSetManager, tid, TaskState.FINISHED, TaskResultLost)
                return
              }
              val deserializedResult = serializer.get().deserialize[DirectTaskResult[_]](
                serializedTaskResult.get.toByteBuffer)
              // force deserialization of referenced value
              deserializedResult.value(taskResultSerializer.get())
              sparkEnv.blockManager.master.removeBlock(blockId)
              (deserializedResult, size)
          }

          // Set the task result size in the accumulator updates received from the executors.
          // We need to do this here on the driver because if we did this on the executors then
          // we would have to serialize the result again after updating the size.
          result.accumUpdates = result.accumUpdates.map { a =>
            if (a.name == Some(InternalAccumulator.RESULT_SIZE)) {
              val acc = a.asInstanceOf[LongAccumulator]
              assert(acc.sum == 0L, "task result size should not have been set on the executors")
              acc.setValue(size.toLong)
              acc
            } else {
              a
            }
          }

          scheduler.handleSuccessfulTask(taskSetManager, tid, result)
        } catch {
          case cnf: ClassNotFoundException =>
            val loader = Thread.currentThread.getContextClassLoader
            taskSetManager.abort("ClassNotFound with classloader: " + loader)
          // Matching NonFatal so we don't catch the ControlThrowable from the "return" above.
          case NonFatal(ex) =>
            logError("Exception while getting task result", ex)
            taskSetManager.abort("Exception while getting task result: %s".format(ex))
        }
      }
    })
  }

//出对 失败的任务
//在 TaskSchedulerImpl 中 的 statusUpdate 中调用 当 task 的执行状态是 TaskState.FAILED | TaskState.KILLED | TaskState.LOST
  //主要目的是 拿到 任务错误的 reason
  def enqueueFailedTask(taskSetManager: TaskSetManager, tid: Long, taskState: TaskState,
    serializedData: ByteBuffer) {
    var reason : TaskFailedReason = UnknownReason
    try {
      getTaskResultExecutor.execute(new Runnable {
        override def run(): Unit = Utils.logUncaughtExceptions {
          val loader = Utils.getContextOrSparkClassLoader
          try {
            if (serializedData != null && serializedData.limit() > 0) {
              reason = serializer.get().deserialize[TaskFailedReason](
                serializedData, loader)
            }
          } catch {
            case cnd: ClassNotFoundException =>
              // Log an error but keep going here -- the task failed, so not catastrophic
              // if we can't deserialize the reason.
              logError(
                "Could not deserialize TaskEndReason: ClassNotFound with classloader " + loader)
            case ex: Exception => // No-op
          } finally {
            // If there's an error while deserializing the TaskEndReason, this Runnable
            // will die. Still tell the scheduler about the task failure, to avoid a hang
            // where the scheduler thinks the task is still running.
            scheduler.handleFailedTask(taskSetManager, tid, taskState, reason)
          }
        }
      })
    } catch {
      case e: RejectedExecutionException if sparkEnv.isStopped =>
        // ignore it
    }
  }

  def stop() {
    getTaskResultExecutor.shutdownNow()
  }
}

你可能感兴趣的:(Spark,源码)