线性代数 1.2 矩阵的行列式

行列式

  一个 n n n阶行列式,如果其中第 i i i行所有元素除 ( i , j ) (i,j) (i,j) a i j a_{ij} aij外都为零,那么这个行列式等于 a i j a_{ij} aij与它的代数余子式的乘积,即 D = a i j A i j \mathbf{D}=a_{ij}\mathbf{A}_{ij} D=aijAij.
证明 将行列式
D = ∣ a 11 ⋯ a i j ⋯ a 1 n ⋮ ⋮ ⋮ 0 ⋯ a i j ⋯ 0 ⋮ ⋮ ⋮ a n 1 ⋯ a n j ⋯ a n n ∣ \mathbf{D}=\begin{vmatrix} a_{11} & \cdots & a_{ij} & \cdots & a_{1n}\\ \vdots & & \vdots & & \vdots\\ 0 & \cdots & a_{ij} & \cdots & 0\\ \vdots & & \vdots & & \vdots\\ a_{n1} & \cdots & a_{nj} & \cdots & a_{nn} \end{vmatrix} D=a110an1aijaijanja1n0ann的数 a i j a_{ij} aij分别经过行、列变换,调换到 ( 1 , 1 ) (1,1) (1,1)元的位置,得
D 1 = ∣ a 11 0 ⋯ 0 a 21 a 22 ⋯ a 2 n ⋮ ⋮ 0 a n 1 a n 2 ⋯ a n n ∣ , \mathbf{D}_{1}=\begin{vmatrix} a_{11} & 0 & \cdots & 0\\ a_{21} & a_{22} & \cdots & a_{2n}\\ \vdots & \vdots & & 0\\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}, D1=a11a21an10a22an20a2n0ann, D 1 = ( − 1 ) i + j − 2 D = ( − 1 ) i + j D \mathbf{D}_{1}=(-1)^{i+j-2}\mathbf{D}=(-1)^{i+j}\mathbf{D} D1=(1)i+j2D=(1)i+jD,而 D 1 \mathbf{D}_{1} D1 ( 1 , 1 ) (1,1) (1,1)元的余子式就是 D \mathbf{D} D ( i , j ) (i,j) (i,j)元的余子式 M i j \mathbf{M}_{ij} Mij.
由于 D 1 \mathbf{D}_{1} D1 ( 1 , 1 ) (1,1) (1,1)元为 a i j a_{ij} aij,第 1 1 1行其余元素都为 0 0 0,有
D 1 = a i j M i j , \mathbf{D}_{1}=a_{ij}\mathbf{M}_{ij}, D1=aijMij,

于是 D = ( − 1 ) i + j D 1 = ( − 1 ) i + j a i j M i j = a i j A i j . \mathbf{D}=(-1)^{i+j}\mathbf{D}_{1}=(-1)^{i+j}a_{ij}\mathbf{M}_{ij}=a_{ij}\mathbf{A}_{ij}. D=(1)i+jD1=(1)i+jaijMij=aijAij.


  行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即 D = a i 1 A i 1 + a i 2 A i 2 + . . . + a i n A i n ( i = 1 , 2 , . . . , n ) , \mathbf{D}=a_{i1}\mathbf{A}_{i1}+a_{i2}\mathbf{A}_{i2}+...+a_{in}\mathbf{A}_{in} (i=1,2,...,n), D=ai1Ai1+ai2Ai2+...+ainAin(i=1,2,...,n),

D = a 1 j A 1 j + a 2 j A 2 j + . . . + a n j A n j ( j = 1 , 2 , . . . , n ) . \mathbf{D}=a_{1j}\mathbf{A}_{1j}+a_{2j}\mathbf{A}_{2j}+...+a_{nj}\mathbf{A}_{nj} (j=1,2,...,n). D=a1jA1j+a2jA2j+...+anjAnj(j=1,2,...,n).

证明
D = ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ a i 1 + 0 + . . . + 0 0 + a i 2 + . . . + 0 ⋯ 0 + . . . + 0 + a i n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ = ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ a i 1 0 ⋯ 0 ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ + ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ 0 a i 2 ⋯ 0 ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ + . . . + ∣ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋮ 0 0 ⋯ a i n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ = a i 1 A i 1 + a i 2 A i 2 + . . . + a i n A i n . \begin{aligned}\mathbf{D}&=\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n}\\ \vdots & \vdots & & \vdots\\ a_{i1}+0+...+0 & 0+a_{i2}+...+0 & \cdots & 0+...+0+a_{in}\\ \vdots & \vdots & & \vdots\\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} \\ &=\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n}\\ \vdots & \vdots & & \vdots\\ a_{i1} & 0 & \cdots & 0\\ \vdots & \vdots & & \vdots\\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}+\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n}\\ \vdots & \vdots & & \vdots\\ 0 & a_{i2} & \cdots & 0\\ \vdots & \vdots & & \vdots\\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} \\ &+...+\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n}\\ \vdots & \vdots & & \vdots\\ 0 & 0 & \cdots & a_{in}\\ \vdots & \vdots & & \vdots\\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} \\ &=a_{i1}\mathbf{A}_{i1}+a_{i2}\mathbf{A}_{i2}+...+a_{in}\mathbf{A}_{in}.\end{aligned} D=a11ai1+0+...+0an1a120+ai2+...+0an2a1n0+...+0+ainann=a11ai1an1a120an2a1n0ann+a110an1a12ai2an2a1n0ann+...+a110an1a120an2a1nainann=ai1Ai1+ai2Ai2+...+ainAin.


  行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即
a i 1 A j 1 + a i 2 A j 2 + . . . + a i n A j n = 0 , i ≠ j a_{i1}\mathbf{A}_{j1}+a_{i2}\mathbf{A}_{j2}+...+a_{in}\mathbf{A}_{jn}=0,i\neq j ai1Aj1+ai2Aj2+...+ainAjn=0,i=j

a 1 i A 1 j + a 2 i A 2 j + . . . + a n i A n j = 0 , i ≠ j . a_{1i}\mathbf{A}_{1j}+a_{2i}\mathbf{A}_{2j}+...+a_{ni}\mathbf{A}_{nj}=0,i\neq j. a1iA1j+a2iA2j+...+aniAnj=0,i=j.

证明 把行列式 D = d e t ( a i j ) \mathbf{D}=det(a_{ij}) D=det(aij)按第 j j j行展开,有
a j 1 A j 1 + a j 2 A j 2 + . . . + a j n A j n = ∣ a 11 ⋯ a 1 n ⋮ ⋮ a i 1 ⋯ a i n ⋮ ⋮ a j 1 ⋯ a j n ⋮ ⋮ a n 1 ⋯ a n n ∣ , a_{j1}\mathbf{A}_{j1}+a_{j2}\mathbf{A}_{j2}+...+a_{jn}\mathbf{A}_{jn}=\begin{vmatrix} a_{11} & \cdots & a_{1n}\\ \vdots & & \vdots\\ a_{i1} & \cdots & a_{in}\\ \vdots & & \vdots\\ a_{j1} & \cdots & a_{jn}\\ \vdots & & \vdots\\ a_{n1} & \cdots & a_{nn} \end{vmatrix}, aj1Aj1+aj2Aj2+...+ajnAjn=a11ai1aj1an1a1nainajnann,

把第 j j j行替换成第 i i i行,得
a i 1 A j 1 + a i 2 A j 2 + . . . + a i n A j n = ∣ a 11 ⋯ a 1 n ⋮ ⋮ a i 1 ⋯ a i n ⋮ ⋮ a i 1 ⋯ a i n ⋮ ⋮ a n 1 ⋯ a n n ∣ = 0. a_{i1}\mathbf{A}_{j1}+a_{i2}\mathbf{A}_{j2}+...+a_{in}\mathbf{A}_{jn}=\begin{vmatrix} a_{11} & \cdots & a_{1n}\\ \vdots & & \vdots\\ a_{i1} & \cdots & a_{in}\\ \vdots & & \vdots\\ a_{i1} & \cdots & a_{in}\\ \vdots & & \vdots\\ a_{n1} & \cdots & a_{nn} \end{vmatrix}=0. ai1Aj1+ai2Aj2+...+ainAjn=a11ai1ai1an1a1nainainann=0.


{ a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = b 2 . . . . . . . . . . . . a n 1 x 1 + a n 2 x 2 + . . . + a n n x n = b n (1) \begin{cases} a_{11}x_{1}+a_{12}x_{2}+...+a_{1n}x_{n}=b_{1} \\ a_{21}x_{1}+a_{22}x_{2}+...+a_{2n}x_{n}=b_{2} \\ ... ... ... ... \\ a_{n1}x_{1}+a_{n2}x_{2}+...+a_{nn}x_{n}=b_{n} \end{cases} \tag{1} a11x1+a12x2+...+a1nxn=b1a21x1+a22x2+...+a2nxn=b2............an1x1+an2x2+...+annxn=bn(1)

  如果线性方程组 ( 1 ) (1) (1)的系数行列式 D ≠ 0 \mathbf{D}\neq 0 D=0,则 ( 1 ) (1) (1)一定有解,且解是唯一的。
其逆否定理为:
如果线性方程组 ( 1 ) (1) (1)无解或有两个不同的解,则它的系数行列式必为零。
  对于齐次线性方程组
{ a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = 0 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = 0 . . . . . . . . . . . . a n 1 x 1 + a n 2 x 2 + . . . + a n n x n = 0 (2) \begin{cases} a_{11}x_{1}+a_{12}x_{2}+...+a_{1n}x_{n}=0 \\ a_{21}x_{1}+a_{22}x_{2}+...+a_{2n}x_{n}=0 \\ ... ... ... ... \\ a_{n1}x_{1}+a_{n2}x_{2}+...+a_{nn}x_{n}=0 \end{cases} \tag{2} a11x1+a12x2+...+a1nxn=0a21x1+a22x2+...+a2nxn=0............an1x1+an2x2+...+annxn=0(2)

如果齐次线性方程组 ( 2 ) (2) (2)的系数行列式 D ≠ 0 \mathbf{D}\neq 0 D=0,则齐次线性方程组 ( 2 ) (2) (2)没有非零解。
如果齐次线性方程组 ( 2 ) (2) (2)有非零解,则它的系数行列式必为零。

你可能感兴趣的:(人工智能学习之路,#数学基础)